检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚宝珍[1] 吴粤隆 荆治家 陈思轩 仲潜 刘振国[2] YAO Baozhen;WU Yuelong;JING Zhijia;CHEN Sixuan;ZHONG Qian;LIU Zhenguo(School of Automotive Engineering,Dalian University of Technology,Dalian 116024,China;China Academy of Transportation Sciences,Beijing 100029,China)
机构地区:[1]大连理工大学汽车工程学院,辽宁大连116024 [2]交通运输部科学研究院,北京100029
出 处:《交通运输研究》2023年第6期12-20,共9页Transport Research
基 金:国家自然科学基金项目(52372313)。
摘 要:为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在特征与时空图卷积编码的机动性与动力性特征拼接融合,并采用两层门控循环单元(Gate Recurrent Unit,GRU)解码出预测轨迹。最后,将采用时空图卷积编码和两层GRU解码的预测轨迹模型STGCN与CR-STGCN在NGSIM数据集上进行对比。结果表明,CR-STGCN在不同机动类型、交通密度场景下的预测精度均优于STGCN,证明了这一方法应用于车辆轨迹预测的有效性,为轨迹预测特征选取提供了新思路。In order to increase the accuracy of vehicle trajectory prediction,this paper proposed a trajectory prediction method with Spatial-Temporal Graph Convolutional Network:CR-STGCN,which was based on latent features.Firstly,an earlier and longer historical trajectory was added specially as input,and a latent feature encoding layer was established based on the input.Next,CR-STGCN concatenated and fused the latent features encoded by the encoding layer of the latent features with the mobility and dynamic features encoded by the spatial-temporal graph convolutional network,and then the predicted trajectory was decoded using a two-layer gate loop unit GRU.Finally,the predicted trajectory model STGCN using spatial-temporal convolutional network encoding and two-layer GRU decoding was compared with CRSTGCN on the NGSIM dataset.The results show that the prediction accuracy of CR-STGCN is higher than STGCN in different types of maneuvers and traffic density scenarios,demonstrating the effectiveness of this method in vehicle trajectory prediction and providing a new approach for feature selection in trajectory prediction.
关 键 词:智能交通 时空图卷积网络 轨迹预测 潜在特征 交通密度
分 类 号:TP391[自动化与计算机技术—计算机应用技术] U495[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222