Delaunay三角剖分的汽车螺旋锥齿轮磨损检测  

Wear Detection of Automotive Spiral Bevel Gears Based on Delaunay Triangulation

在线阅读下载全文

作  者:刘怡然 李丽君[2] 杜月云[1] LIU Yi-ran;LI Li-jun;DU Yue-yun(Transportation College,Shangqiu Polytechnic,He’nan Shangqiu 476000,China;School of Transportation and Vehicle Engineering,Shandong University of Technology,Shandong Zibo 255049,China)

机构地区:[1]商丘职业技术学院交通学院,河南商丘476000 [2]山东理工大学交通与车辆工程学院,山东淄博255049

出  处:《机械设计与制造》2024年第1期285-288,293,共5页Machinery Design & Manufacture

基  金:河南省高等学校重点研究项目—新时代下高职教育产教融合协同育人途径和对策研究(21A880015);河南省高等教育教学改革研究项目—高职院校教师信息化素养培育与提升策略研究(2021SJGLX771)。

摘  要:由于汽车后桥螺旋锥存在耦合竖向振动,导致齿轮磨损难以精准检测,因此提出Delaunay三角剖分的汽车螺旋锥齿轮磨损检测方法。通过扫描式方法测量齿轮表面的离散数据,对相邻扫描线进行Delaunay三角剖分,完成齿面非特征离散数据分块,实现对齿轮表面区域的全面描述。根据数据分块结果,采用基于Hermite插值的LMD算法,遍历计算三角网格的PF分量幅值,完成齿轮磨损故障的检测。实验结果表明,所提出方法的磨损深度与磨损率检测结果与实测结果基本一致,并且能够对齿轮磨损区域面积进行有效检测,检测精度最高达到98.7%。因此,说明所提出方法能够对齿轮磨损进行有效的检测。Due to the coupled vertical vibration of the automotive rear axle spiral bevel gear,it is difficult to accurately detect gear wear.Therefore,a Delaunay triangulation method for automotive spiral bevel gear wear detection is proposed.By using a scanning method to measure discrete data on the gear surface,Delaunay triangulation is performed on adjacent scan lines to com-plete non feature discrete data segmentation of the gear surface,achieving a comprehensive description of the gear surface area.Based on the data segmentation results,the LMD algorithm based on Hermite interpolation is used to traverse and calculate the amplitude of the PF component of the triangular mesh,and complete the detection of gear wear faults.The experimental results show that the wear depth and wear rate detection results of the proposed method are basically consistent with the measured results,and can effectively detect the area of gear wear area,with a detection accuracy of up to 98.7%.Therefore,it indicates that the proposed method can effectively detect gear wear.

关 键 词:DELAUNAY三角剖分 汽车螺旋锥齿轮 磨损检测 非特征离散数据分块 

分 类 号:TH16[机械工程—机械制造及自动化] TH164

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象