检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李冰冰 朱格 曹晗 李峰[1] 潘雨青[1] LI Bingbing;ZHU Ge;CAO Han;LI Feng;PAN Yuqing(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang Jiangsu 212013)
机构地区:[1]江苏大学计算机科学与信息工程学院,江苏镇江212013
出 处:《软件》2023年第12期70-75,共6页Software
摘 要:为解决现有数字式仪表自动读取方法依赖于大样本训练且精度不高的问题,提出了两级识别机制,即先对仪表图像进行分类获取先验知识,然后基于先验知识获取表盘中感兴趣的区域并进行字符识别。该方法联合使用级联小波变换模块以及ELU激活函数改进了ResNet34网络模型,提高了仪表盘分类的准确性,并采用先验知识获取感兴趣区域,进一步避免了无关信息的干扰,减少了样本量。实验数据表明,文中方法是可行有效的,300张数字式仪表图像读取准确率为95.67%,相比于传统识别方法,该方法识别的数字式仪表的类型更多,效果更好。To solve the problem of existing digital instrument automatic reading methods relying on large sample training and low accuracy,a two-level recognition mechanism is proposed,which first classifies the instrument image to obtain prior knowledge,and then obtains the region of interest in the dial based on prior knowledge and performs character recognition.This method combines cascaded wavelet transform modules and ELU activation functions to improve the ResNet34 network model and improve the accuracy of dashboard classification,and adopting prior knowledge to obtain regions of interest further avoids interference from irrelevant information and reduces sample size.The experimental data shows that the method proposed in the article is feasible and effective,with an accuracy rate of 95.67%for reading 300 digital instrument images.Compared to traditional recognition methods,this method recognizes more types of digital instruments and has better results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.82.161