储运发箱搬运机械臂设计及轨迹规划  

Design and trajectory planning of a launching box handling robot arm

在线阅读下载全文

作  者:石宇 刘彦臣[1] SHI Yu;LIU Yanchen(School of Mechanical and Electrical Engineering,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学机电工程学院,太原030051

出  处:《兵器装备工程学报》2023年第S02期6-12,共7页Journal of Ordnance Equipment Engineering

摘  要:针对某火箭炮储运发箱补给效率不足,自动化程度低的问题,提出一种以五自由度搬运机械臂代替传统吊装的方案,自主设计了该搬运机械臂的机械结构,建立其运动学模型,结合解析法与几何法提出了适用该机械臂的运动学逆解算法,并运用Matlab验证了运动学正逆解的正确性;基于3-5-3次分段多项式插值轨迹规划,以运行时间为优化目标,添加了基于自适应学习因子与惯性权重的改进粒子群算法,将改进粒子群算法与传统粒子群算法与遗传算法进行了对比实验,试验结果表明,与传统粒子群算法与遗传算法相比较而言,改进的算法在迭代次数上分别减少了51.5%,50.7%,有效提升了算法效率。算法优化后的机械臂运动时间缩短了24%,且各关节轨迹平滑,运行平稳,验证了算法的有效性。In response to the problem of insufficient efficiency and low automation in the supply of a certain rocket launcher's storage and transportation box,a scheme is proposed to replace traditional lifting with a five degree of freedom handling robotic arm.The mechanical structure of the handling robotic arm is independently designed,and its kinematic model is established.Combining analytical and geometric methods,a kinematic inverse solution algorithm suitable for the robotic arm is proposed,and the correctness of the kinematic forward and inverse solutions is verified using Matlab;Based on 3-5-3 degree piecewise polynomial interpolation trajectory planning,with running time as the optimization objective,an improved particle swarm optimization algorithm based on adaptive learning factors and inertia weights was added.Comparative experiments were conducted between the improved particle swarm algorithm and traditional particle swarm algorithm and genetic algorithm.The experimental results showed that compared with traditional particle swarm algorithm and genetic algorithm,the improved algorithm reduced the number of iterations by 51.5%and 50.7%,respectively,Effectively improving algorithm efficiency.The smooth motion trajectory of the optimized robotic arm verifies the effectiveness of the algorithm.

关 键 词:自动搬运 机械臂 轨迹规划 改进粒子群算法 

分 类 号:TJ02[兵器科学与技术—兵器发射理论与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象