检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱安琪 项厚宏 齐美彬[2] ZHU Anqi;XIANG Houhong;QI Meibin(School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China;School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China)
机构地区:[1]合肥工业大学机械工程学院,安徽合肥230009 [2]合肥工业大学计算机与信息学院,安徽合肥230601
出 处:《合肥工业大学学报(自然科学版)》2024年第1期41-46,共6页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(62201189);安徽省重大基础研究资助项目(2023z04020018);中央高校基本科研业务费专项资金资助项目(JZ2022HGTA0347)。
摘 要:传统模型驱动的波达方向(direction of arrival, DOA)估计算法性能受限于有限的信号特征、快拍数、信噪比、信杂比等因素,在低信噪比、快拍数少的极端情况下,性能较差。为克服上述问题,提高在极端条件下的估计精度,文章提出基于深度复数神经网络(complex-valued neural networks, CVNN)的单快拍DOA估计算法,构建深度复数神经网络模型,学习原始带噪信号与理想无噪复信号之间的映射关系,进而实现噪声抑制和期望信号特征增强的目的,提高DOA估计精度。仿真实验结果表明,经CVNN增强后,数据的等效信噪比约提高了1 dB,等效快拍数提高了3,该文所提算法相较于已有的多种物理驱动算法而言,具有更高的估计精度和泛化性。The performance of traditional model-driven direction of arrival(DOA)estimation algorithm is limited by the finite signal characteristics,number of snapshots,signal-to-noise ratio(SNR),signal-to-heterodyne ratio and other factors,and the algorithm performance is poor in the extreme cases of low SNR and few snapshots.To overcome the above problems and improve the estimation accuracy under extreme conditions,this paper proposes a single snapshot DOA estimation algorithm based on complex-valued neural networks(CVNN),which constructs a deep complex network model to learn the mapping relationship between the original noisy signal and the ideal noise-free complex signal,and then achieves noise suppression and desired signal feature enhancement.The proposed algorithm is used to improve the accuracy of DOA estimation.Simulation results show that after CVNN enhancement,the equivalent SNR of the data is improved by about 1 dB,and the equivalent number of snapshots is improved by 3,the proposed algorithm has higher estimation accuracy and generalization than the existing multiple algorithms driven by physics.
关 键 词:波达方向(DOA)估计 深度复数神经网络(CVNN) 数据驱动 模型驱动
分 类 号:TN958.92[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229