检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王涛 吴福雨 程紫微 王世杰[2] 岳佳妮 樊小东 白淑叶 卢玺 肖萍 肖峰 WANG Tao;WU Fuyu;CHENG Ziwei;WANG Shijie;YUE Jiani;FAN Xiaodong;BAI Shuye;LU Xi;XIAO Ping;XIAO Feng(Ningxia Great Wall Water Co.,Ltd,Yinchuan 750004,China;North China Electric Power University,Beijing 102206,China;Shenyang Academy of Environmental Sciences,Shenyang 110167,China)
机构地区:[1]宁夏长城水务有限责任公司,银川750004 [2]华北电力大学,北京102206 [3]沈阳环境科学研究院,沈阳110167
出 处:《环境保护科学》2024年第1期163-170,共8页Environmental Protection Science
摘 要:为解决饮用水处理过程中关键水质参数浊度取样检测时滞性大和精度低的问题,提出了基于遗传算法优化BP神经网络(GA-BP)的出水浊度预测模型。利用2019—2021年银川市某水厂的实测出水浊度及相关水质数据,采用灰色关联度分析对影响出水浊度的输入指标进行筛选,结合Q型聚类分析将样本数据划分为具有不同特征的3类,构建了基于GA-BP神经网络的机器学习模型对出水浊度进行预测,并与传统BP和未分类的预测结果进行对比。结果表明:与未分类相比,利用Q型聚类分析后预测模型的误差评价指标决定系数(R2)和均方根误差(RMSE)分别优化了2.9%和22%;与传统BP神经网络相比,经遗传算法优化后的预测模型误差评价指标R2和RMSE分别优化了2.4%和12%。研究表明,Q型聚类分析和遗传算法均能提高BP神经网络预测模型的泛化能力,减小误差。To solve the problems of large time delay and low precision in the sampling and detection of key water quality parameters in drinking water treatment,a turbidity prediction model based on genetic algorithm optimized BP neural network(GABP)is proposed.Using the measured turbidity and related water quality data of a waterworks in Yinchuan City from 2019 to 2021,the input indicators that affect the turbidity are screened using gray correlation analysis,and the sample data is clustered into three different groups with different characteristics using Q-type clustering analysis.A machine learning model based on GA-BP neural network is constructed to predict the turbidity,and the results are compared with those of traditional BP and unclassified prediction models.The results show that compared with unclassified prediction,the error evaluation indexes of the prediction model after Qtype clustering analysis are improved by 2.9%and 22%in terms of R2 and RMSE,respectively;compared with the traditional BP neural network,the error evaluation indexes of the prediction model optimized by genetic algorithm are improved by 2.4%and 12%in terms of R2 and RMSE,respectively.The research shows that both Q-type clustering analysis and genetic algorithm can improve the generalization ability of BP neural network prediction model and reduce errors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.102.140