过载和攻击时间约束下的非线性最优制导方法  被引量:3

Nonlinear optimal guidance method with constraints on overload and impact time

在线阅读下载全文

作  者:王坤 段欣然 陈征[1,2] 黎军 WANG Kun;DUAN Xinran;CHEN Zheng;LI Jun(School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China;Huanjiang Laboratory,Zhuji 311800,China)

机构地区:[1]浙江大学航空航天学院,浙江杭州310027 [2]浣江实验室,浙江诸暨311800

出  处:《系统工程与电子技术》2024年第2期649-657,共9页Systems Engineering and Electronics

基  金:国家自然科学基金(62088101)资助课题。

摘  要:考虑导弹过载受限条件下,对以期望时间为攻击目标的非线性最优制导问题进行了研究。首先,建立了非线性最优制导问题的理论模型,基于庞特里亚金极大值原理和饱和函数方法建立了最优轨迹的最优性条件。其次,根据最优性条件和哈密尔顿轨迹参数化方法,建立了最优轨迹的参数化微分方程组,使得通过数值积分即可生成从飞行状态到最优制导指令映射关系的数据集。然后,通过前馈神经网络对上述映射关系进行近似,实现了非线性最优制导指令的毫秒量级实时生成。最后,通过数值仿真验证了所提非线性最优制导指令生成方法的有效性。This paper is concerned with devising the nonlinear optimal guidance for overload-constrained interceptor to hit a target at a desired impact time.Firstly,the theoretical model for the nonlinear optimal guidance problem is established,and optimality conditions for the optimal trajectory are derived in virtue of Pontryagin’s maximum principle and saturation function method.Secondly,by embedding the optimality conditions into a parameterized family of Hamiltonian trajectories,a parameterized set of differential equation for optimal trajectories is formulated,which allows one to use a simple numerical integration to generate the dataset of the mapping from the flight state to the optimal guidance command.Then,a feedforward neural network is trained by the dataset to approximate the mapping from flight state to the optimal guidance command.As a consequence,the nonlinear optimal guidance command can be generated by the trained neural network within milliseconds.Finally,numerical simulations are performed to demonstrate and verify the effectiveness of the proposed nonlinear optimal guidance law.

关 键 词:过载约束 攻击时间控制 非线性最优制导 哈密尔顿轨迹参数化 前馈神经网络 

分 类 号:V448.2[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象