检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李涛[1,2] 李佳霖[2] 阮宁 徐久成[1,3] Li Tao;Li Jialin;Ruan Ning;Xu Jiucheng(College of Computer and Information Engineering,Henan Normal University,Xinxiang,453007,China;College of Software,Henan Normal University,Xinxiang,453007,China;Engineering Lab of Henan Province for Intelligence Business&Internet of Things,Xinxiang,453007,China)
机构地区:[1]河南师范大学计算机与信息工程学院,新乡453007 [2]河南师范大学软件学院,新乡453007 [3]“智慧商务与物联网技术”河南省工程实验室,新乡453007
出 处:《南京大学学报(自然科学版)》2023年第5期790-802,共13页Journal of Nanjing University(Natural Science)
基 金:国家自然科学基金(61976082);河南省高等学校重点科研项目(22B520013)。
摘 要:多目标进化算法在特征选择方面有显著的优势,但其求解高维数据最优特征子集的性能依然较差,且从获得的Pareto解集中选择合理最优解仍是一个挑战性的问题.为了解决该问题,提出一种基于自适应环境因子熵权决策的多目标特征选择算法.首先,通过设计环境因子来自适应识别关键特征,优化候选特征子空间;其次,将环境因子嵌入改进的交叉算子和变异算子,实现全局最优特征子集的自适应搜索;最后,利用关联环境因子的熵权决策策略,从获得的Pareto解集中选出最优解.实验表明,与现有的五种多目标特征选择算法相比,提出的算法具有更高的分类精度,并能准确地获取全局最优解,验证了该算法的有效性.Multi-objective evolutionary algorithms have significant advantages in feature selection,but their performance in solving the optimal feature subset of high-dimensional data is still poor,and selecting a reasonable optimal solution from the obtained Pareto solution set remains a challenging issue.To solve this problem,this paper proposes a multi-objective feature selection algorithm based on adaptive environmental factor entropy weight decision-making.The advantages of the proposed algorithm are as follows.Firstly,key features are adaptively identified by designing environmental factors to optimize candidate feature subspaces.Secondly,environment factors are embedded into improved crossover and mutation operators to achieve adaptive search for the globally optimal feature subset.Finally,using an entropy weight decision-making strategy that correlates environmental factors,the optimal solution is selected from the obtained Pareto solution set.Experiments show that the proposed algorithm has higher classification accuracy and accurately obtains the global optimal solution compared to the existing five multi-objective feature selection algorithms,verifying the effectiveness of the proposed algorithm.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117