基于最小二乘孪生支持向量机的不确定数据学习算法  被引量:1

A Least Squares Twin Support Vector Machine Method with Uncertain Data

在线阅读下载全文

作  者:刘锦能 肖燕珊[1] 刘波[2] Liu Jin-neng;Xiao Yan-shan;Liu Bo(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学计算机学院,广东广州510006 [2]广东工业大学自动化学院,广东广州510006

出  处:《广东工业大学学报》2024年第1期79-85,共7页Journal of Guangdong University of Technology

基  金:国家自然科学基金资助项目(62076074)。

摘  要:孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。Twin support vector machine learns two nonparallel hyperplanes by calculating two quadratic programming problems to solve the binary classification problems.However,in practical applications,the data usually contain uncertain information,making it difficult to construct the classification model.This paper proposed a new and efficient uncertain-data-based least squares twin support vector machine(ULSTSVM)method to address the problem of data uncertainty.Firstly,since the data may contain uncertain information,a noise vector was introduced to model the uncertain information of each example.Secondly,the noise vectors were incorporated into the least squares TWSVM.Finally,to solve the derived learning problem,we employed a two-step heuristic framework to train the least squares TWSVM classifier and updated the noise vectors alternatively.The experiments showed that our proposed ULSTSVM outperforms the baselines in training time and meanwhile achieves comparable classification accuracy.In sum,ULSTSVM adopts a noise vector to model the uncertain information and transforms the quadratic programming problems of TWSVM into linear equations,such that better classification accuracy and higher training efficiency can be obtained.

关 键 词:最小二乘 孪生支持向量机 不平行平面学习 数据不确定性 分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象