检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:由智超 高宏力[1,2] 郭亮[1,2] 陈昱呈 刘岳开 YOU Zhichao;GAO Hongli;GUO Liang;CHEN Yucheng;LIU Yuekai(Engineering Research Center of Advanced Driving Energy-Saving Technology,Southwest Jiaotong University,Chengdu 610031,China;School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]西南交通大学先进驱动节能技术教育部工程研究中心,四川成都610031 [2]西南交通大学机械工程学院,四川成都610031
出 处:《西南交通大学学报》2024年第1期160-167,共8页Journal of Southwest Jiaotong University
基 金:国家自然科学基金(51775452)。
摘 要:在不拆刀情况下,基于机器视觉的在线刀具状态监测系统可完成刀具磨损测量和状态评估,但与在线捕获刀具图像质量息息相关的系统部署参数选择却鲜有研究.为解决上述问题,本文构建基于改进信息熵的多项式回归模型以实现刀具状态监测系统的最优部署.首先,使用自适应阈值方法去除捕获刀具图像中背景要素干扰,并通过信息熵指标评估图像中刀具磨损区域的成像质量;然后,构建相机工作距离、曝光时间与所提出评价指标之间的多项式回归模型以描述部署参数与提出评价指标的映射关系;最后,应用最小二乘法求取多项式模型系数获得最优部署参数.在确保自变量的因子水平涵盖最优部署参数情况下设计正交实验,实验结果表明:提出的评价指标与工作距离、曝光时间等部署参数之间均存在主效应关系,符合光学成像系统的变化规律;与支持向量机、决策树和K近邻(K-nearest neighbor,KNN)算法等非线性回归预测模型相比,三次多项式回归模型预测误差最小,其平均绝对误差、均方误差、均方根误差分别为0.022631,0.00068,0.026069;在多项式回归模型求解的最优部署参数下,所捕获的刀具图像的测量精度达到96.76%,提高0.74%,满足刀具状态监测的精度要求.In-situ tool-condition monitoring system based on machine vision realizes tool wear measurement and condition assessment without removing the tool.However,the system deployment parameters that are closely related to the quality of the tool image are rarely studied.To this end,a polynomial regression model based on improved information entropy is constructed to realize the optimal deployment of the tool-condition monitoring system.First,the adaptive threshold method is used to remove the interference of background elements in the captured tool image,and the imaging quality of the tool wear area is evaluated by the information entropy metric.Then,a polynomial regression model with respect to the camera working distance,exposure time,and the proposed evaluation metric is constructed to describe the mapping relationship between the deployment parameters and the proposed evaluation metric.Finally,the least squares method is used to solve the coefficients of the polynomial model and obtain the optimal deployment parameters.Orthogonal experiments are designed to ensure that the factor levels of independent variables cover the optimal deployment parameters.The experimental results show that there is a main effect relationship between the proposed evaluation metric and deployment parameters,such as working distance and exposure time,which is in line with the changing rule of optical imaging systems.Compared with nonlinear regression prediction models such as support vector machine,decision tree and K-nearest neighbor(KNN),the cubic polynomial regression model has the smallest prediction error,with its mean absolute error,mean square error,and root mean square error being 0.022631,0.00068,and 0.026069,respectively.The measurement accuracy of the tool image captured under the optimal deployment parameters reaches 96.76%,increased by 0.74%,demonstrating that it meets the accuracy requirements of tool condition monitoring.
关 键 词:信息熵 方差分析 多项式回归 机器视觉 刀具状态监测
分 类 号:TH878[机械工程—仪器科学与技术] TG714[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.200.28