检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李梓楷 王宇飞 廖广军[1] 郭晶晶 刘光尧 LI Zikai;WANG Yufei;LIAO Guangjun;GUO Jingjing;LIU Guangyao(Department of Criminal Science and Technology,Guangdong Police College,Guangzhou 510440,China;Institute of Forensic Science,Ministry of Public Security,Beijing 100038,China)
机构地区:[1]广东警官学院刑事技术系,广州510440 [2]公安部鉴定中心,北京100038
出 处:《刑事技术》2024年第1期1-10,共10页Forensic Science and Technology
基 金:广东省重点建设学科科研能力提升项目(2021ZDJS047);痕迹科学与技术公安部重点实验室开放课题(2021FMKFKT07);教育部科技部司法鉴定技术应用与社会治理学科创新引智基地项目(B20077);广东省科技创新战略专项资金(大学生科技创新培育)项目(2022GDSKJCX034)。
摘 要:深度学习算法的发展为伪造人像视频的创作增添了“助力”,应运而生的深度伪造检测成为学界和业界关注的焦点。基于深度学习的伪造视频检测技术需要耗费大量时间与算力训练分类器,深度学习网络的黑盒性和不可解释性也困扰着深度伪造人像视频取证研究。围绕深度伪造人像视频的真实性取证问题,本文提出一种基于视频帧间量化参数强度值的检测方法,并通过二元Logistic回归方程给出参考阈值。实验结果表明:本文的方法在检测利用DeepFaceLab换脸平台合成的深度伪造人像视频中表现出良好的准确率和鲁棒性。所提方法有助于对可疑人像视频真实性进行判断,为涉案人像视频提供取证依据。With the breakthrough of deep-learning technology in the fi eld of artifi cial intelligence,deepfake portrait videos appear more and more frequently,such as facial tampering,pornographic video face swapping,changing politicians’faces and making false statements,etc.This kind of deepfakes may pose a threat to societies;therefore,distinguishing deepfake videos from genuine ones has become an urgen issue.Lots of deepfake detection methods are carried out by constructing many data sets with different compression factors.At present,the deepfake detection technology based on deep-learning algorithm is popular,which requires lots of signifi cant time consumption and massive computing power for training classifi cation model.At the same time,the attributes of black box and unexplainability of deep learning networks also plague the researchers in forensic science.In order to solve the problem of authenticity forensics of the deepfake portrait videos,this paper takes portrait videos encoded by H.264/AVC as the research object,and proposes a method based on inter-frame quantization parameter intensity value to detect deepfake portrait videos and real portrait videos.The selection of inter-frame quantization parameter intensity value and the determination of the inter-frame quantization parameter intensity by binary Logistic regression equation are expounded in detail.The experimental results show favorable accuracy and robustness for the deepfake portrait videos synthesized by DeepFaceLab platform.The paper proposed an interpretable detection method for deepfake portrait videos,which is conducive to determine the direction of investigation and confirm the criminal facts.But there are some limitations.Firstly,the experimental samples are not rich enough.Secondly,the introduced method is greatly affected by video compression,which caused limited application scenarios.Thirdly,the analysis effi ciency needs to be optimized.
关 键 词:视频侦查 深度伪造人像 视频帧间关系 量化参数 二元Logistic回归方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.75.131