机构地区:[1]南京市溧水区人民医院妇产科,江苏南京211200 [2]南京医科大学第二附属医院妇产科,江苏南京210000
出 处:《肿瘤代谢与营养电子杂志》2023年第6期750-757,共8页Electronic Journal of Metabolism and Nutrition of Cancer
基 金:国家自然科学基金项目(81802595)。
摘 要:目的探讨外周血炎症-营养参数对卵巢癌患者的预后价值,并开发一个基于炎症-营养参数与临床病理特征的列线图模型,测试其在预后评估中的价值。方法选取2017年6月至2020年6月期间于南京市溧水区人民医院(n=56)和南京医科大学第二附属医院(n=150)接受手术治疗的206例卵巢癌患者为研究对象,收集临床资料和外周血参数进行回顾性分析。使用受试者操作特征(ROC)曲线比较中性粒细胞与淋巴细胞计数比(NLR)、血小板与淋巴细胞计数比(PLR)、淋巴细胞与单核细胞计数比(LMR)、预后营养指数(PNI)、血清总胆固醇与外周血淋巴细胞计数比(TCLR)及C反应蛋白-白蛋白比(CAR)对卵巢癌患者总生存(OS)期的预测价值。通过单、多因素Cox回归分析筛选卵巢癌患者的独立预后因素,并构建列线图模型。采用Harrell一致性指数(C-index)和校准曲线评价模型的预测性能。结果PNI与CAR的最佳截止点为47.8和0.08,其AUC值分别为0.803(95%CI=0.736~0.870)和0.749(95%CI=0.673~0.824)。在单因素分析中,共有8个变量可能影响卵巢癌患者OS,它们是年龄(P=0.011)、血清CA125(P=0.001)、术后残余灶(P<0.001)、国际妇产科联合会(FIGO)分期(P=0.001)、LMR(P<0.001)、PNI(P<0.001)、CAR(P<0.001)以及TCLR(P=0.037)。多因素Cox回归分析表明血清CA125(HR=2.814,95%CI=1.469~5.394,P=0.002)、术后残余灶(HR=3.324,95%CI=1.736~6.361,P<0.001)、FIGO分期(HR=4.454,95%CI=1.360~14.583,P=0.014)、PNI(HR=3.615,95%CI=1.852~7.057,P<0.001)与CAR(HR=3.330,95%CI=1.684~6.584,P=0.001)是卵巢癌患者的独立预后因素。基于以上5个变量构建预后模型,其C-index为0.821(95%CI=0.756~0.886)。校准曲线显示模型预测1年、3年、5年生存率与实际结果之间具有良好一致性。结论PNI与CAR是卵巢癌患者的独立预后标志物,基于这些炎症-营养参数与临床病理特征构建的预后模型显示出良好且稳定的预测性能,或许是卵巢癌患者风险分层�Objective To investigate the prognostic value of six inflammation and nutrition-related parameters in peripheral blood for ovarian cancer patients,and develop a nomogram model based on these parameters and clinicopathological features and test its clinical value for prognostic assessment.Method A total of 206 ovarian cancer patients who underwent surgical treatment in Nanjing Lishui People's Hospital(n=56)and the Second Affiliated Hospital of Nanjing Medical University(n=150)between June 2017 and June 2020 were included in this retrospective study,and their clinical data and peripheral blood parameters were collected.The predictive values of the neutrophil-to-lymphocyte ratio NLR platelet-to-lymphocyte ratio PLR lymph-to-monocyte ratio(LMR),prognostic nutritional index(PNl),total cholesterol-to-lymphocyte ratio(TCLR)and C-reactive protein-to-albumin ratio CAR for overall survival OS of ovarian cancer patients were compared using the receiver operation characteristics ROC curve.The univariate and multivariate Cox regression analysis was conducted to select independent prognostic factors for ovarian cancer patients and a nomogram model was developed based on these factors.The predictive performance of the model was evaluated by the Harrell's consistency index(C-index)and calibration curves.Result The best cutoff values of PNl and CAR were 47.8 and 0.08,with the AUC values of 0.803(95%CI=0.736-0.870)and 0.749(95%CI=0.673-0.824),respectively.The predictive values of PNl and CAR were superior to other parameters.ln the univariate analysis a total of 8 variables may affect the OS of ovarian cancer patients,they are age(P=0.011),serum CA125(P=0.001),postoperative residual focus(P<0.001),FIGO stage(P=0.001),LMR(P<0.001),PNI(P<0.001),CAR(P<0.001)and TCLR(P=0.037).The multivariate Cox regression analysis showed that serum CA125 level(HR=2.814,95%CI=1.469-5.394,P=0.002),residual disease(HR=3.324,95%Cl=1.736-6.361,P<0.001),FIGO stage(HR=4.454,95%CI=1.360-14.583,P=0.014),PNI(HR=3.615,95%CI=1.852-7.057,P<0.001),and CAR(HR=3.33
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...