检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李岩[1] 杨得成[1] 于光华[1] 高爽 刘禹彤 翟茁 张宝金 LI Yan;YANG Decheng;YU Guanghua;GAO Shuang;LIU Yutong;ZHAI Zhuo;ZHANG Baojin(Heihe University,Heihe Heilongjiang 164300,China)
机构地区:[1]黑河学院,黑龙江黑河164300
出 处:《激光杂志》2024年第1期142-147,共6页Laser Journal
基 金:黑龙江省教育厅省属本科高校基本科研业务项目支持(No.2022-KYYWF-0386)。
摘 要:为了提高红外图像的超分辨率重建效果,提出基于深度学习的红外图像超分辨率重建方法。利用红外图像的反射特性与红外辐射特性建立红外图像的显著性区域检测模型;通过可见光与近红外图像之间样貌差异度水平检测图像的边缘轮廓特征,提取可见光与近红外光融合性特征参数;根据融合层次不同对图像信号级、像素级、特征级、决策级四个维度进行重建,提取图像的边缘、形状、纹理特征;根据特征分布的噪声水平与配准质量,采用深度学习算法实现对红外图像超分辨率重建。仿真测试结果得出,该方法进行红外图像重建的显著性特征检测能力较强,重建后将图像分辨率提升到1280×960 PPI,模板匹配准确率为49.4%,峰值信噪比PSNR值高于36.34 dB,结构相似度SSIM值高于0.972,重建效果较好,更适合用于特定场景下的红外图像目标特征识别。In order to improve the effect of infrared image super-resolution reconstruction,an infrared image super-resolution reconstruction method based on the fusion of visible light and near-infrared light based on depth learning is proposed.The salient region detection model of infrared image is established by using the reflective characteristics and infrared radiation characteristics of infrared image;The edge contour features of the image are detected by the appearance difference level between the visible light and near-infrared images,and the fusion feature parameters of visible light and near-infrared light are extracted;According to different fusion levels,image signal level,pixel level,feature level and decision level are reconstructed to extract image edge,shape and texture features;According to the noise level of the feature distribution and the registration quality,the infrared image super-resolution reconstruction is realized by using the depth learning algorithm.The simulation test results show that the method has a strong ability to detect the salient features of infrared image reconstruction,and the image resolution is improved to 1280×960 PPI,the template matching accuracy is 49.4%,the peak signal to noise ratio PSNR value is higher than 36.34 dB,and the structure similarity SSIM value is higher than 0.972.The reconstruction effect is good,and it is more suitable for infrared image target feature recognition in specific scenes.
关 键 词:深度学习 红外图像 超分辨率重建 可见光 近红外光
分 类 号:TN219[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229