双注意力机制的复杂场景文字识别网络  被引量:1

Optical Character Recognition Network Based on Dual Attention in Complex Scene

在线阅读下载全文

作  者:宋问玉 杜文爽 封宇 王丽园[4] SONG Wenyu;DU Wenshuang;FENG Yu;WANG Liyuan(Huazhong Electric Power International Trade Co.,Ltd.,Wuhan 430066,China;China Power Technology and Equipment Co.,Ltd.,Beijing 100052,China;School of Electronic Information,Wuhan University,Wuhan 430072,China;CCCC Second Highway Survey,Design and Research Institute Co.,Ltd.,Wuhan 430040,China)

机构地区:[1]华中电力国际经贸有限责任公司,湖北武汉430066 [2]中国电力技术装备有限公司,北京100052 [3]武汉大学电子信息学院,湖北武汉430072 [4]中交第二公路勘察设计研究院有限公司,湖北武汉430040

出  处:《无线电工程》2024年第2期343-350,共8页Radio Engineering

基  金:国家自然科学基金(42101448)。

摘  要:文字识别技术在电力系统、车辆驾驶等领域应用十分广泛。随着人工智能技术的兴起和万物互联(Internet of Everything,IoE)的发展,厂商对随时随地获取复杂场景文字的需求也越来越迫切。针对文字识别环境背景复杂、视角畸变、字迹浅显和中英文字符混杂形似等诸多问题,设计出具有文字区域提取与校正、图像增强、文本检测和文本识别的光学字符识别(Optical Character Recognition,OCR)算法框架。设计了基于双注意力机制和内容感知上采样的DBNet文本检测模块增强网络的特征提取选择能力,提高内容感知能力,设计了融入中心损失CRNN+CTC的文本识别模块增大字符之间的特征间距。实验结果表明,改进的文本检测网络在ICDAR2015数据集上准确率提升了5.09%,召回率提高2.12%,F评分提高了3.46%。在中英文文本识别数据集中,改进的文本识别网络对中英文字符识别准确率提高了1.2%。Optical character recognition technology is widely used in power system,vehicle driving and other fields.With the development of artificial intelligence and Internet of Everything(IoE)technology,the enterprises have an increasingly urgent need to obtain text for complex scenes anytime and anywhere.For many problems such as complex background,distorted visual angle,plain handwriting and mixed Chinese and English characters,an Optical Character Recognition(OCR)algorithm framework is proposed with text region extraction and correction,image enhancement,text detection and text recognition.A DBNet text detection module based on a dual-attention mechanism and content-aware upsampling is designed to enhance the feature extraction selection capability of the network and improve content-awareness capability,and a text recognition module incorporating center-loss CRNN+CTC is designed to increase the feature spacing between characters.The experimental results show that the improved text detection network has improved accuracy by 5.09%,recall by 2.12%and F-score by 3.46%on the ICDAR2015 dataset.The improved text recognition network improved the accuracy of Chinese and English characters recognition by 1.2%on the Chinese and English text recognition dataset.

关 键 词:路标识别 双注意力机制 文本检测 文本识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象