基于GAF-CNN的n/γ甄别方法研究  被引量:2

Study on n/γDiscrimination Method Based on GAF-CNN

在线阅读下载全文

作  者:黄坤翔 张江梅 王嘉麒 苏覃 HUANG Kunxiang;ZHANG Jiangmei;WANG Jiaqi;SU Qin(College of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China;Laboratory of National Defense Key Discipline of Nuclear Waste and Environmental Safety,Southwest University of Science and Technology,Mianyang 621000,China)

机构地区:[1]西南科技大学信息工程学院,四川绵阳621000 [2]西南科技大学核废物与环境安全国防重点学科实验室,四川绵阳621000

出  处:《原子能科学技术》2024年第2期461-470,共10页Atomic Energy Science and Technology

基  金:国防科工局基础科研项目(JCKY2020404C004,JCKY2022404C005);四川省自然科学基金(2022NSFSC0044)。

摘  要:中子探测是核能开发领域的重要技术,由于中子闪烁体探测器往往会对中子和γ射线同时响应,因此有效分辨中子和γ射线是实现高精度中子探测的先决条件。为进一步提升n/γ甄别性能,本文结合脉冲形状甄别(PSD)技术和格拉姆角场(GAF)图像转换方法,将卷积神经网络(CNN)分类模型应用到n/γ甄别中。通过GAF将n/γ脉冲数据转化为二维图像,之后将其输入到CNN分类模型中达到样本辨别的目的。为验证GAF-CNN甄别的准确性,与传统CNN甄别法和电荷比较法进行了甄别效果对比。结果表明,GAF-CNN甄别法具有更低的辨别误差率和较短的处理时间,且n/γ甄别品质因子(FOM)有着数量级上的提升。同时其具备网络轻量化的特点,有助于实现CNN PSD算法的嵌入式部署,为研制高性能n/γ复合探测能谱仪提供了一种可行的PSD技术解决方案。Neutron detection is an important technology in the field of nuclear energy development and is involved in many research and application areas,such as particle physics,material science,cosmic ray detection and even environmental monitoring,oil well detection and nuclear medicine,etc.Since neutron scintillator detectors often respond to both neutron andγ-ray,effective discrimination between neutron andγ-ray is a prerequisite for high-precision neutron detection.In order to further explore way to enhance the performance of n/γdiscrimination,this paper combined the pulse shape discrimination(PSD)technique and the Gramian angular field(GAF)image transformation method,and applied the convolutional neural network(CNN)classification model to the n/γdiscrimination work.The 239 Pu-Be neutron source and the Cs 2LiYCl 6:Ce 3+(CLYC)detector were used to set up an experimental platform for the n/γhybrid radiation field,and 20000 original pulsed one-dimensional sequence samples were acquired through the Tektronix model DPO4034 oscilloscope.In the experiment,the charge comparison method was adopted to discriminate the original samples,and the discrimination results can be used to produce the labels of the dataset used in the GAF-CNN method and for the final comparison of the discriminative performance of the various methods.Due to the excellent performance of the CLYC detector,the discrimination effect of the charge comparison method is good,which ensures that the labeling of the dataset can be produced with high accuracy,and after the best performance of the charge comparison method has been achieved through the optimization of the window,the gap between the upper limit of the performance of the traditional method and the neural network method can be clearly found.The GAF-CNN discrimination method transformed the n/γpulse data into a two-dimensional image through the GAF,after which the image was fed into the CNN classification model for sample discrimination,which transformed the n/γdiscrimination problem into a simple

关 键 词:n/γ甄别 脉冲形状甄别 格拉姆角场 卷积神经网络 电荷比较法 

分 类 号:TL812.1[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象