检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李进军 王肖锋[2,3] 葛为民 LI Jinjun;WANG Xiaofeng;GE Weimin(School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China;Tianjin Key Laboratory for Advanced Mechatronical System Design and Intelligent Control,Tianjin University of Technology,Tianjin 300384,China;National Experimental Teaching Demonstration Center of Electromechanical Engineering,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]天津理工大学计算机科学与工程学院,天津300384 [2]天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津300384 [3]天津理工大学机电工程国家级实验教学示范中心,天津300384
出 处:《计算机集成制造系统》2024年第1期90-102,共13页Computer Integrated Manufacturing Systems
基 金:国家重点研发计划资助项目(2017YFB1303304);天津市科技计划重大专项资助项目(17ZXZNGX00110)。
摘 要:主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型。针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊缝缺陷在线检测方法。RNG-BDPCANet在范数距离度量标准下,利用双向二维主成分分析作卷积核,并采用非贪婪策略得到目标函数最优的整体投影矩阵,对离群值具有较强的鲁棒性。最后,在自建的焊缝人工数据集、ORL和Yale B人脸数据集上分别进行实验。结果表明,所提出的算法在分类性能方面得到显著提高,具有较强的鲁棒性能。Principal Component Analysis Network(PCANet)is a simplified deep subspace learning model based on Convolutional Neural Network(CNN).When PCANet is applied to the weld defect detection,it cannot reflect the complete structure information of data and is sensitive to noise.To solve these problems,a Robust Non-Greedy Bi-Directional two-dimensional PCANet algorithm(RNG-BDPCANet)weld defect online detection method was proposed,which used a bi-directional two-dimensional principal component analysis as the convolution kernel under norm distance metric to obtain the optimal global projection matrix of the objective function with a non-greedy strategy.It was robust to outliers.The experiments were carried out on the self-built weld artificial dataset,ORL and Yale B face dataset respectively.The results showed that the proposed algorithm had a significant improvement in the classification and robustness performances.
关 键 词:焊缝缺陷 主成分分析网络 深度学习 二维主成分分析 鲁棒性 范数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219