检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雷鸣 蒋丽英 崔建国 李贺 刘明昆 郭濠 ZHANG Leiming;JIANG Liying;CUI Jianguo;Li He;LIU Mingkun;GUO Hao(College of Automation,Shenyang Aerospace University,Shenyang 110136,China)
机构地区:[1]沈阳航空航天大学自动化学院,沈阳110136
出 处:《沈阳航空航天大学学报》2023年第6期68-75,共8页Journal of Shenyang Aerospace University
基 金:国家自然科学基金(项目编号:62003223)。
摘 要:在航空发动机起动系统异常状态的识别研究中,起动系统的参数具有数据间相关性强、数据维度高、数据冗余信息多等特点。为降低数据维度,提高异常状态识别的准确率,将改进ReliefF算法与概率神经网络(probabilistic neural network,PNN)结合,提出改进ReliefFPNN的航空发动机起动系统异常状态识别方法,更加有效地降低了参数的维度,并提升了异常状态识别模型的性能。利用该模型针对起动系统进行识别验证和分析。结果表明,利用改进后的ReliefF-PNN算法得到的参数子集进行异常状态识别的准确率优于改进前的结果,模型性能得到了进一步改善。In the study of abnormal state identification of aircraft engine starting systems,the parameters of the starting system have characteristics such as strong correlation between data,high data dimensions and a lot of redundant information in data.In order to reduce the data dimension and improve the accuracy of abnormal state identification,an improved ReliefF algorithm was combined with probabilistic neural network(PNN)and improved ReliefF-PNN was proposed for abnormal state identification of aircraft engine starting system,which effectively reduced the dimension of parameters and improved the performance of the abnormal state identification model.The obtained model was used for identification verification and analysis of the starting system.The results show that the accuracy of using the improved ReliefF-PNN algorithm to identify abnormal states is better than before,further improving the performance of the model.
关 键 词:发动机起动系统 参数选择 RELIEFF算法 概率神经网络 异常状态识别
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.26.136