检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊昌全 张宇宁 刘育 唐道建 XIONG Changquan;ZHANG Yuning;LIU Yu;TANG Daojian(State Power Investment Group Sichuan Electric Power Co.,Ltd.,Chengdu 610000,China;State Power Investment Group Southwest Energy Research Institute Co.,Ltd.,Chengdu 610000,China)
机构地区:[1]国家电投集团四川电力有限公司,四川成都610213 [2]国家电投集团西南能源研究院有限公司,四川成都610213
出 处:《粘接》2024年第2期143-146,共4页Adhesion
摘 要:随着我国“双碳”工作的不断推进,光伏电站的规模逐渐扩大。为解决光伏电站图像安防技术中存在的拍摄角度、光线影响大,识别准确率低的问题,提出了一种基于SIFT的光伏电站图像安防技术。通过SIFT算法提取光伏电站图像特征点,解决了光线、角度带来的识别误差问题;通过卷积神经网络方法准确的识别了光伏电站车辆、人员、动物、积雪等安防问题。该方法在某光伏电站进行应用,其光伏电站图像安防识别准确率平均为99.7%。所提方法能有效提高光伏电站图像安防识别准确率。With the continuous advancement of China’s“dual carbon”work,the scale of photovoltaic power stations has gradually expanded.In order to solve the problems of large influence of shooting angle and light and low recognition accuracy in the image security technology of photovoltaic power station,an image security technology of photovoltaic power station based on SIFT was proposed.The SIFT algorithm was used to extract the image feature points of the photovoltaic power station,which solved the problem of recognition errors caused by light and angle,and the convolutional neural network method was used to accurately identify the security problems of the photovoltaic power station,such as vehicles,personnel,animals,and snow.The method was applied in a photovoltaic power station,and the average accuracy of image security recognition of photovoltaic power station was 99.7%.The proposed method could effectively improve the accuracy of image security recognition of photovoltaic power station.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.106.93