检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨志蒙 黄波 赵永礼 YANG Zhimeng;HUANG Bo;ZHAO Yongli(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学机械与汽车工程学院,上海201620
出 处:《农业装备与车辆工程》2024年第2期34-39,共6页Agricultural Equipment & Vehicle Engineering
摘 要:提出一种利用电子鼻系统检测茶香气味辨别茶叶种类的识别方法,使用主成分分析(PCA)、K-means聚类和卷积神经网络(CNN)3种机器学习方法对10种茶叶种类进行识别。实验结果表明,基于PCA降维特征的K聚类精度为85.17%,比基于原始特征的K聚类精度78.83%更优,基于PCA降维特征的CNN算法识别率达到95%,基于茶香气味检测的茶叶种类识别方法方便快捷,具有可行性。An identification method that uses an electronic nose system to detect the tea aroma to identify the tea categories was proposes.Three machine learning methods were used to identify 10 types of tea,namely principal component analysis(PCA),K-means clustering,and convolutional neural network(CNN),respectively.The experimental results showed that the accuracy of K-clustering based on PCA dimensionality reduction features was 85.17%,better than the accuracy of K-clustering based on original features of 78.83%.The identification accuracy of the CNN algorithm based on PCA dimensionality reduction features could reach to 95%.It confirms that the tea category recognition method based on tea aroma and odor detection is efficient and feasible.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.15.153