Atomistic learning in the electronically grand-canonical ensemble  被引量:1

在线阅读下载全文

作  者:Xi Chen Muammar El Khatib Per Lindgren Adam Willard Andrew J.Medford Andrew A.Peterson 

机构地区:[1]School of Engineering,Brown University,Providence,RI 02912,USA [2]Department of Chemistry,Massachussetts Institute of Technology,Cambridge,MA,USA [3]School of Chemical and Biomolecular Engineering,Georgia Institute of Technology,Atlanta,GA 30318,USA

出  处:《npj Computational Materials》2023年第1期1619-1627,共9页计算材料学(英文)

基  金:The authors acknowledge support from the U.S.Department of Energy under Award DE-SC0019441;the National Science Foundation under award 1553365.Calculations were undertaken at Brown University’s Center for Computation and Visualization.

摘  要:A strategy is presented for the machine-learning emulation of electronic structure calculations carried out in the electronically grand-canonical ensemble.The approach relies upon a dual-learning scheme,where both the system charge and the system energy are predicted for each image.The scheme is shown to be capable of emulating basic electrochemical reactions at a range of potentials,and coupling it with a bootstrap-ensemble approach gives reasonable estimates of the prediction uncertainty.The method is also demonstrated to accelerate saddle-point searches,and to extrapolate to systems with one to five water layers.We anticipate that this method will allow for larger length-and time-scale simulations necessary for electrochemical simulations.

关 键 词:CANONICAL ENSEMBLE ELECTRONIC 

分 类 号:O562[理学—原子与分子物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象