检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任玉涛 程远志 REN Yu-Tao;CHENG Yuan-Zhi(School of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China)
机构地区:[1]青岛科技大学信息科学技术学院,青岛266061
出 处:《计算机系统应用》2024年第1期110-118,共9页Computer Systems & Applications
基 金:国家自然科学基金(61806107,61702135)
摘 要:Transformer模型中,卷积视觉转换器(CvT)具备同时提取图像的局部和全局特征的能力而受到关注.对于腹部器官分割问题,为了解决CNN模型分割目标边界轮廓模糊不清的问题,提出了一种新颖的基于CvT和CNN的双分支闭环分割模型DBLNet.模型利用形状先验和预测结果的分割轮廓显式监督并指导网络学习过程.模型包括:轮廓提取编码模块(CEE)、边界形状分割网络(BSSN)和闭环结构.CEE模块首次利用改造的3D CvT和3D门控卷积层(GCL)捕获多层级轮廓特征,并辅助BSSN训练.BSSN模块设计形状特征融合模块(SFF)同时捕获目标区域和轮廓特征,推动CEE训练拟合.闭环结构使得双分支的分割结果互相反馈并辅助对方的训练.DBLNet在BTCV排行榜上测试,平均Dice得分为0.878,排名第13位;在临床医院数据进行应用测试,表现出强大的性能.In the Transformer model,the convolutional vision Transformer(CvT)has caught attention for its ability to extract both local and global features from images simultaneously.However,for abdominal organ segmentation tasks,the blurry object boundaries in CNN models should be addressed.Thus,this study proposes a novel dual-branch closed-loop segmentation model DBLNet based on CvT and CNN.The model employs explicit supervision of segmented contours using shape priors and predicted results to guide the network learning.The DBLNet model includes contour extraction encoding module(CEE),boundary shape segmentation network(BSSN),and closed-loop structure.The CEE module first utilizes modified 3D CvT and 3D gated convolutional layers(GCL)to capture multi-level contour features and assist in BSSN training.The BSSN module contains a shape feature fusion(SFF)module that captures both the object region and contour features to promote CEE training convergence.The closed-loop structure allows mutual feedback of segmentation results between the dual branches,assisting each other’s training.Experimental evaluations on the BTCV benchmark show that DBLNet achieves an average Dice score of 0.878,ranking 13th.Application tests on clinical hospital data demonstrate the strong performance of the proposed model.
关 键 词:腹部器官 边缘轮廓 双分支编码器 闭环结构 卷积视觉转换器 医学影像处理 特征融合 图像分割
分 类 号:R318[医药卫生—生物医学工程] TP391.41[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90