检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨树承 胡夫涛[1] 张昶旭 YANG Shucheng;HU Futao;ZHANG Changxu(School of Mathematical Sciences,Anhui University,Hefei 230601,China)
出 处:《哈尔滨商业大学学报(自然科学版)》2024年第1期93-97,106,共6页Journal of Harbin University of Commerce:Natural Sciences Edition
基 金:国家自然科学基金(11401004);安徽省自然科学基金(2108085MA02);安徽省高校自然科学基金(KJ2020A0001)。
摘 要:设G=V(V,E)是一个简单无向图.一个点悬挂三个一度点的图称为爪图,D图是一个三角形其中两个点各悬挂一条长为2的路.如果图G的任何导出子图都不同构于爪图也不同构于D图,则称G为无爪和无D图.设S是V的非空子集,如果不在S的点一定与S中的某个点相邻,则称S为G的控制集.如果G中的点一定与S中的某个点相邻,则S称为G的全控制集.最小全控制集包含顶点的数目称为全控制数.给出了当G是N阶连通的无爪和无D图时全控制数紧的上界.Let G=(V,E)be a simple undirected graph.A claw graph was one vertex pending three degree one vertex,A D graph was a triangle with two vertices that each of them pending a path of length 2.If any induced subgraph of G does not isomorphic to claw graph and not isomorphic to D graph,G was claw-free and D graph.Let S be a subset of V.If every vertex not in S was adjacent to a vertex in S,then S was a dominating set of G.If every vertex in G was adjacent to a vertex in S,then S was a total dominating set of G.The total domination number of G,was the minimum cardinality of all total dominating sets.In this paper,a tight bound for a connected claw-free and D-freegraph G withorder n were shown.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222