无人机摄影测量点云道路自适应提取  

Adaptive Extraction of UAV Photogrammetric Point Cloud Road Surface

在线阅读下载全文

作  者:李威祥 李武劲 陈思源 LI Wei-Xiang;LI Wu-Jin;CHEN Si-Yuan(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China;D Reconstruction and Intelligent Application,Hunan Provincial Engineering Research Center,Yueyang 414006,China)

机构地区:[1]湖南理工学院信息科学与工程学院,岳阳414006 [2]湖南省工程研究中心三维重建与智能应用技术,岳阳414006

出  处:《计算机系统应用》2024年第2期232-238,共7页Computer Systems & Applications

基  金:湖南省水利厅项目(XSKJ2021000-13);湖南省教育厅优秀青年项目(20B266)。

摘  要:在无人机摄影测量中,针对传统的地面点云提取方法对图像点云数据中的道路提取适应性较差的问题,本文提出了一种无人机摄影测量点云道路自适应提取方法.首先,根据点云的空间几何特征将点云划分为3个类别;然后,针对非道路的点云类别采取相应的方法进行剔除;最后,对经过自适应提取方法得到的点云数据进行滤波平滑和基于颜色的区域生长分割处理.实验结果表明,该方法提取的道路点云的I类误差为4.97%,II类误差为1.14%.该方法能够有效地提取目标道路路面,提高了无人机摄影测量工程应用中点云数据处理的效率.In UAV photogrammetry,traditional ground point cloud extraction methods have poor adaptability when extracting roads from image point cloud data.Therefore,this study proposes a UAV photogrammetric point cloud road adaptive extraction method.Firstly,the point cloud is divided into three categories based on its spatial geometric characteristics.Then,corresponding methods are applied to remove non-road point cloud categories.Finally,the point cloud data obtained through the adaptive extraction method is filtered for smoothing and subjected to color-based region growing segmentation.Experimental results show that the I-class error of road point cloud extracted by this method is 4.97%,and the II-class error is 1.14%.This method effectively extracts target road surfaces,improving the efficiency of point cloud data processing in UAV photogrammetric applications.

关 键 词:无人机摄影测量 图像点云 点云滤波 点云分割 道路提取 

分 类 号:P231[天文地球—摄影测量与遥感] U495[天文地球—测绘科学与技术] TP391.41[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象