检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈庆典 钟晨 刘慧 王晓辉 Chen Qingdian;Zhong Chen;Liu Hui;Wang Xiaohui(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 102616,China;Shenyang Fire Science and Technology Re-search Institute of EME,Liaoning Shenyang 110034,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
机构地区:[1]北京建筑大学电气与信息工程学院,北京102616 [2]应急管理部沈阳消防研究所,辽宁沈阳110034 [3]建筑大数据智能处理方法研究北京市重点实验室,北京102616
出 处:《消防科学与技术》2024年第2期183-188,共6页Fire Science and Technology
基 金:国家重点研发计划课题(2020YFC1522804)。
摘 要:针对古建筑火灾检测需要快速、准确及实时的需求,建立了一个专门用于古建筑火灾检测的数据集,用于古建筑火灾检测的深度学习研究。利用CBAM注意力机制模块,结合多尺度特征融合,对FireNet网络进行改进,提出适用于古建筑火灾检测的轻量级FireNet-AMF网络,在FireNet数据集和本文构建的古建筑火灾检测数据集上验证了FireNet-AMF网络的火灾检测能力。与改进前的网络相比,FireNet-AMF网络在FireNet数据集上对火灾识别的准确率达到了95.08%,与原网络相比提高了1.17%,在本文构建的古建筑火灾检测数据集上的准确率达到了95.62%,比原网络提高了1.62%。该网络在保证轻量级的同时也保证了在古建筑火灾检测中较高的检测精度。In response to the need for fast,accurate,and real-time fire detection of historical buildings,this paper builds a data-set specifically for historical building fire detection,which is used for deep learning in historical building fire detection for the first time.By fusing the CBAM attention mechanism and combining it with multi-scale feature fusion,we improve and propose the FireNet-AMF network based on the FireNet network.The fire detection capability of the FireNet-AMF network is verified on the FireNet dataset and the historical building fire detection data-set.The FireNet-AMF network achieves an accuracy of 95.08%for fire detection with the FireNet dataset,an improvement of 1.17%compared to the FireNet network,and an accuracy of 95.62%for experiments on the historical building fire detection dataset we built,which is an improvement of 1.62%compared to the FireNet network.The network ensures a light weight while guaranteeing a high level of historical building fire detection accu-racy.
关 键 词:古建筑 火灾检测 图像分类 FireNet 注意力机制 多尺度特征融合
分 类 号:X913.4[环境科学与工程—安全科学] TU998.1[建筑科学—市政工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117