检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王正家 胡飞飞[1,2] 张成娟 雷卓 何涛 WANG Zhengjia;HU Feifei;ZHANG Chengjuan;LEI Zhuo;HE Tao(Hubei Key Laboratory of Modern Manufacturing Quality Engineering,Wuhan 430068,Hubei,China;School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,Hubei,China)
机构地区:[1]现代制造质量工程湖北省重点实验室,湖北武汉430068 [2]湖北工业大学机械工程学院,湖北武汉430068
出 处:《计算机工程》2024年第2期256-265,共10页Computer Engineering
基 金:国家自然科学基金(51275158)。
摘 要:现有端到端的立体匹配算法为了减轻显存消耗和计算量而预设固定视差范围,在匹配精度和运行效率上难以平衡。提出一种基于轻量化Transformer的自适应窗口立体匹配算法。利用具有线性复杂度的坐标注意力层对低分辨率特征图进行位置编码,减轻计算量并增强相似特征的辨别力;设计轻量化Transformer特征描述模块,转换上下文相关的特征,并引入可分离多头自注意力层对Transformer进行轻量化改进,降低Transformer的延迟性;用可微匹配层对特征进行匹配,设计自适应窗口匹配细化模块进行亚像素级的匹配细化,在提高匹配精度的同时减少显存消耗;经视差回归后生成无视差范围的视差图。在KITTI2015、KITTI2012和SceneFlow数据集上的对比实验表明,该算法比基于标准Transformer的STTR在匹配效率上快了近4.7倍,具有更快的运行速度和更友好的存储性能;比基于3D卷积的PSMNet误匹配率降低了18%,运行时间快了5倍,实现了更好的速度和精度的平衡。The existing end-to-end stereo matching algorithms preset a fixed disparity range to reduce memory consumption and computation,making it difficult to balance matching accuracy and running efficiency.To solve this problem,this paper proposes an adaptive window stereo matching algorithm based on a lightweight Transformer.The coordinate attention layer with linear complexity is used to encode the position of the low-resolution feature map,which reduces the amount of calculation and enhances the discrimination of similar features.The lightweight Transformer feature description module is designed to convert context-related features,and a separable Multi-Head Self-Attention(MHSN)layer is introduced to reduce Transformer delay.The differentiable matching layer is used to match the features,and an adaptive window matching and refinement module is designed to perform sub-pixel matching and refinement,which improves matching accuracy and reduces video memory consumption,whereby after disparity regression,a disparity map can be generated regardless of the disparity range.The comparative experiments on KITTI2015,KITTI2012,and SceneFlow datasets showed that the proposed stereo matching algorithm is approximately 4.7 times faster than the standard Transformer-based STTR in matching efficiency and has friendlier storage performance.Compared with the PSMNet based on 3D convolution method,the mismatching rate was reduced by 18%and the running time was five times faster,achieving a better balance between speed and accuracy.
关 键 词:立体匹配 TRANSFORMER 自适应窗口 可分离自注意力机制 坐标注意力
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7