检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘立业 盖璇 LIU Liye;GAI Xuan(Northeast Petroleum University,Daqing,Heilongjiang 163000,China)
出 处:《自动化与仪器仪表》2023年第12期197-200,共4页Automation & Instrumentation
基 金:黑龙江省重点课题《现阶段"三亿人上冰雪"活动在黑龙江省高校深入推进的问题与策略研究》(GJB1422176)。
摘 要:为了提升体能检测中的计数效率,研究提出一种结合堆叠沙漏模型(Stacked Hourglass Model,Hourglass)和超轻量级神经网络的三维人体姿态估计模型,并引入了K邻近算法(K Nearest Neighbors,KNN)来实现动作分类与计数。实验结果显示,所提模型的计数精度可达99.66%,实际测试的帧速在27.41 FPS左右。对不同体能姿态估计的平均召回率在99.33%。与传统的计数方式相比,本智能计数模型具有更高的计算精度和更低的成本。由此,本次实验所构建的模型具有较强的适用性。To improve the counting efficiency in physical fitness detection,a three-dimensional human pose estimation model combining Stacked Hourglass Model(Hourglass) and ultra lightweight neural network is proposed,and the K Nearest Neighbors(KNN) algorithm is introduced to achieve action classification and counting.The experimental results show that the counting accuracy of the proposed model can reach 99.66%,and the actual tested frame rate is around 27.41 FPS.The average recall rate for estimating different physical postures is 99.33%.Compared with traditional counting methods,this intelligent counting model has higher computational accuracy and lower cost.Therefore,the model constructed in this experiment has strong applicability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15