检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张剑锐 魏霞[1] 张林鍹[2] 陈燕楠 卢杰 ZHANG Jianrui;WEI Xia;ZHANG Linxuan;CHEN Yannan;LU Jie(School of Electrical Engineering,Xinjiang University,Urumqi 830017,China;National Computer Integrated Manufacturing System Engineering Research Center,Tsinghua University,Beijing 100084,China)
机构地区:[1]新疆大学电气工程学院,乌鲁木齐830017 [2]清华大学国家计算机集成制造系统工程技术研究中心,北京100084
出 处:《计算机工程与应用》2024年第4期183-191,共9页Computer Engineering and Applications
基 金:新疆维吾尔自治区自然科学基金(2022D01C431);新疆维吾尔自治区青年科学基金(2022D01C693)。
摘 要:针对电力系统目标检测任务中绝缘子大小不一、背景干扰等影响而导致精度低、漏检率高的问题,提出了基于改进YOLO v7绝缘子检测与定位方法。在YOLO v7骨干网络中加入轻量级注意力机制(convolutional block attention module, CBAM),使网络模型从通道、空间两个方面更加关注绝缘子特征,降低绝缘子检测中的漏检率。在网络模型深层添加集中特征金字塔(concentrated feature pyramid, CFP),使不同尺度的特征图进行信息交换和聚合,进而获得更加全面的绝缘子特征,提高绝缘子检测精度。通过k-means算法对预选框聚类,得到最适合绝缘子预选框大小。实验结果表明,改进以后的YOLO v7网络模型平均检测精度(mean average precision, mAP)达到96.2%,精准率为90.8%,召回率为93.8%。改进的方法在电力系统绝缘子检测中具有较广泛的应用前景。This paper aims to address the problems of low accuracy and high leakage rate due to the influence of different insulator sizes and background interference in the target detection task of power systems.Firstly,a convolutional block attention module(CBAM)is added to the YOLO v7 backbone network to make the network model pay more attention to the insulator features from both channel and space aspects and reduce the leakage rate in insulator detection.Secondly,a concentrated feature pyramid(CFP)is added to the deeper layer of the network model to allow the information exchange and aggregation of feature maps at different scales,thus obtaining more comprehensive insulator features and improving insulator detection accuracy.Finally,the k-means algorithm is used to cluster the preselected frames to obtain the most suitable insulator preselected frame size.The experimental results show that the improved YOLO v7 network model has a detection mAP(mean average precision)of 96.2%,a precision of 90.8%,and a recall of 93.8%.The improved method in this paper has a wide application prospect in the insulator detection of power systems.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30