考虑客户用电安全隐患的配电网脆弱线路风险自动预警方法  被引量:6

Automatic Early Warning Method of Vulnerable Line Risk in Distribution Network Considering Potential Safety Hazards of Customer Power Consumption

在线阅读下载全文

作  者:王超 张海涛 郑皓天 贾蓉蓉 WANG Chao;ZHANG Hai-tao;ZHENG Hao-tian;JIA Rong-rong(State Grid Shaanxi Electric Power Company Marketing Service Center(Metrology Center),Xi'an 710000 China)

机构地区:[1]国网陕西省电力公司营销服务中心(计量中心),陕西西安710000

出  处:《自动化技术与应用》2024年第2期45-48,67,共5页Techniques of Automation and Applications

摘  要:脆弱线路作为配电网的重要组成部分,是保证电网安全与用户安全的关键环节。为此,从客户用电安全隐患角度出发,提出配电网脆弱线路风险自动预警方法。基于电气介数模型与线路潮流传输最大值,建立有功潮流介数模型,降序排列有功潮流介数,识别脆弱线路。利用脆弱线路形成最小风险的目标函数模型来评估风险,依据风险期望值与控制决策,划分风险评估等级与预警等级,采用神经网络模型,实现风险自动预警。实验结果表明,所提方法的脆弱线路识别结果与风险自动预警效果较好,能够正确作出风险预警,且实践优势显著。As the main part of distribution network,fragile line is the key link to ensure the safety of power grid and users.Therefore,from the perspective of potential safety hazards of customers'power consumption,an automatic early warning method of vulnerable line risk in distribution network is proposed.Based on the electrical medium model and the maximum value of line power flow transmission,the active power flow medium model is established,and the active power flow medium is arranged in descending or-der to identify vulnerable lines.The objective function model of minimum risk formed by fragile lines is used to evaluate the risk.According to the risk expectation and control decision,the risk evaluation level and early warning level are divided.The neural network model is used to realize the automatic risk early warning.The experimental results show that the proposed method has good results in fragile line identification and automatic risk early warning,can correctly make risk early warning,and has signifi-cant practical advantages.

关 键 词:客户用电安全隐患 配电网脆弱线路 风险自动预警 有功潮流 神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TM711[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象