检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金益锋 赵晓蕊 崔均健 陈伟卿 王国栋 蒋雪梅 JIN Yi-feng;ZHAO Xiao-rui;CUI Jun-jian;CHEN Wei-qing;WANG Guo-dong;JIANG Xue-mei(Institute of Forensic Science,Ministry of Public Security,Beijing 100038,China;School of Criminal Investigation,People s Public Security University of China,Beijing 100038,China;Dalian Everspry Sci&Tech Co.,ltd.,Dalian 116085,China)
机构地区:[1]公安部鉴定中心,北京100038 [2]中国人民公安大学侦查学院,北京100038 [3]大连恒锐科技股份有限公司,大连116085
出 处:《科学技术与工程》2024年第3期1125-1130,共6页Science Technology and Engineering
基 金:公安部科技强警基础专项(2021JC17);中央级公益性科研院所基本科研业务费专项(2022JB040)。
摘 要:为了提高赤足足迹人身识别算法的准确率,提出了一种基于深度学习的足迹识别算法。足底各区域所受压力的不同导致了它们包含的信息量存在一定的差异性,为了获取更稳定、区分度更高的特征,该算法采用ResNet50作为基础网络,在特征层进行分块处理。构建了一个包含2000人的赤足足迹库进行训练和一个包含3000人的赤足足迹库进行测试,该算法利用500人1000幅测试图在测试库上首位识别准确率达到了98.50%,优于常规的ResNet50网络。实验表明,基于特征分块的足迹识别算法在赤足足迹识别中获得了很好的识别效果。In order to improve the accuracy of the barefoot footprint-based person identification algorithm,a deep learning-based foot recognition algorithm was proposed.The differing pressure experienced by different regions of the foot sole results in variations in the amount of information they contain.In order to obtain more stable and discriminative features,ResNet50 was utilized as the underlying network,and block processing was performed on the feature layer.A barefoot footprint database containing 2000 individuals was constructed for training,and another database containing 3000 individuals was used for testing.The algorithm achieves a top-1 recognition accuracy of 98.50%on the testing database using 1000 test images from 500 individuals,surpassing the performance of the conventional ResNet50 network.It is observed in the experiment that the feature-based segmentation approach achieves excellent recognition results in barefoot footprint identification.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3