端面铣削工件表面粗糙度数学模型与实验验证  被引量:5

Mathematical Model and Experimental Verification of Workpiece Surface Roughness in Face Milling

在线阅读下载全文

作  者:刘德伟 许芝令 李长河 秦爱国 刘波 张彦彬 Yusuf Suleiman Dambatta 安庆龙[7] LIU Dewei;XU Zhiling;LI Changhe;QIN Aiguo;LIU Bo;ZHANG Yanbin;YUSUF Suleiman Dambatta;AN Qinglong(School of Mechanical and Automotive Engineering,Qingdao University of Technology,Shandong Qingdao 266520,China;Qingdao Haikong Pressure Vessel Sales Co.,Ltd.,Shandong Qingdao 266000,China;Qingdao Kaws Intelligent Manufacturing Co.,Ltd.,Shandong Qingdao 266109,China;Sichuan New Aviation Ta Technology Co.,Ltd.,Sichuan Shifang 618400,China;State Key Laboratory of Ultra-precision Machining Technology,Hong Kong Polytechnic University,Hong Kong 999077,China;Mechanical Engineering Department,Ahmadu Bello University,Kaduna 810106,Nigeria;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]青岛理工大学机械与汽车工程学院,山东青岛266520 [2]青岛海空压力容器有限公司,山东青岛266000 [3]青岛卡沃斯智能制造有限公司,山东青岛266109 [4]四川新航钛科技有限公司,四川什邡618400 [5]香港理工大学超精密加工技术国家重点实验室,中国香港999077 [6]艾哈迈杜·贝洛大学机械工程学院,卡杜纳810106,尼日利亚 [7]上海交通大学机械与动力工程学院,上海200240

出  处:《表面技术》2024年第4期125-139,共15页Surface Technology

基  金:国家自然科学基金(52105457,51975305);山东省科技型中小企业创新能力提升工程(2022TSGC1115);泰山学者工程专项(tsqn202211179);山东省青年科技人才托举工程(SDAST2021qt12);山东省自然科学基金(ZR2023QE057,ZR2022QE028,ZR2021QE116,ZR2020KE027)。

摘  要:目的针对多种表面粗糙度影响因素的耦合作用使轮廓形成机理不清,导致表面粗糙度数学模型存在表面质量智能管控工业应用预测精度不足的技术难题,建立端面铣削工件表面粗糙度数学模型。方法首先,基于加工运动学机理和刀具几何学分析端面铣削工件表面轮廓形成机理,建立考虑刀具跳动的工件表面轮廓模型以及轮廓高度偏差关于铣削力的补偿函数,并通过卷积神经网络(Convolution Neural Network,CNN)进行解析。其次,建立端面铣削表面粗糙度数学模型。最后,进行可转位面铣刀端面铣削ZG32MnMo的实验验证,分别采集轮廓数据与铣削力信号,建立以铣削力为输入、轮廓高度偏差数据为输出的铣削数据集,训练卷积神经网络解析轮廓高度补偿值并验证理论模型的准确性,对比分析考虑刀具跳动的表面粗糙度数学模型与CNN优化考虑刀具跳动的表面粗糙度数学模型的精度。结果CNN优化考虑刀具跳动的表面粗糙度数学模型对加工重叠区与非重叠区内沿刀具进给方向的轮廓算术平均偏差Ra的预测误差分别为18.71%和14.14%,与考虑刀具跳动的表面粗糙度数学模型相比,精度分别提高了10.61%和32.83%,CNN优化考虑刀具跳动的表面粗糙度数学模型对轮廓单元的平均宽度R_(sm)和支承长度率R_(mr(c))的预测结果与实验值吻合。结论考虑刀具跳动以及动态铣削力耦合作用边界条件的表面粗糙度数学模型能够有效预测端面铣削表面粗糙度,可为在质量管控工程中的应用提供理论指导与技术支撑。Surface roughness has a significant impact on the wear resistance,corrosion resistance,and reliability of components.Accurate prediction of surface roughness can effectively control the manufacturing process and optimize processing parameters.However,the coupling effects of various influencing factors on surface roughness obscure the formation mechanism of profiles,leading to technical challenges in the insufficient predictive accuracy of mathematical models for surface roughness intelligent control in industrial applications.This study established a mathematical model for surface roughness in face milling to address this issue.Firstly,the surface profile forming mechanism of face milling workpiece was analyzed and the surface profile model along the tool feed direction was established based on tool geometry and machining kinematics,taking into consideration the tool runout boundary conditions.The mapping between dynamic factors(tool wear,tool vibration,elastic recovery)and surface roughness was established through the milling force.The compensation function of profile height deviation about milling force was established and resolved by a convolutional neural network(CNN)which contained 5 convolutional layers and 3 fully connected layers.Next,the mathematical model for surface roughness in face milling was developed,with Ra serving as a characterization parameter for surface roughness.Finally,the face milling ZG32MnMo experiment was carried out to collect the profile data and milling force signals respectively,which used indexable face milling cutters.The milling data set was established with cutting force as input and profile height deviation data as output.The CNN was trained and the profile height compensation values was analyzed.CNN training results showed RMSE of 0.81μm and 0.84μm for the training and test sets,respectively.Through CNN,compensation values for profile height were analyzed to enhance the prediction accuracy of the mathematical model for surface roughness.The surface roughness mathematical mo

关 键 词:铣削 轮廓形成机理 表面粗糙度 铣削力 刀具跳动 卷积神经网络 

分 类 号:TG84[金属学及工艺—公差测量技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象