基于泛化熵随机森林的雷达目标航迹起始方法  

Track initiation based on random forests with generalized entropy

在线阅读下载全文

作  者:刘安宁 史建涛 LIU Anning;SHI Jiantao(College of Electrical Engineering and Control Science,Nanjing Tech University,Nanjing 211816,China;Nanjing Research Institute of Electronic Technology,Nanjing 210039,China)

机构地区:[1]南京工业大学电气工程与控制科学学院,南京211816 [2]中国电子科技集团公司第十四研究所,南京210039

出  处:《空间电子技术》2024年第1期7-12,共6页Space Electronic Technology

基  金:国家自然科学基金项目(编号:U19B2031);预先研究项目(编号:61404130210)。

摘  要:文章提出了一种基于泛化熵随机森林的雷达目标航迹起始方法,通过引入一种泛化熵可调参数,解决了传统随机森林算法对差异数据集泛化能力和适应性差且难以确定全局最优解的难题。首先利用雷达多周期回波数据构建随机森林算法决策模型,其次基于设计的泛化熵处理规则对实测数据进行分类处理得到所需测试样本,最后将测试样本输入完成模型训练的随机森林进行迭代寻优和自主决策以获取雷达目标的航迹起始结果。雷达实测数据验证表明,文章所提出的方法相比于传统随机森林方法具有更为优越的目标航迹起始性能。A track initiation approach based on random forests with generalized entropy has been proposed in this paper.In the framework of generalized entropy,the generalization performance of decision tree in random forest is improved on various data sets by introducing an adjustable parameter.Furthermore,it can effectively over-come the problems of poor adaptability to data and local optimization in the process of tree building.In this work,the radar target track initiation problem has been transformed into sample classification with supervised learning.In the first stage,the random forest decision tree model has been constructed based on historical data.Then the measurement data are preprocessed using the generalized entropy adjustable simple rule method to get the test samples.Finally,the test samples will be input the trained random forest to get the target track initi-ation result.It is verified by radar data that the proposed method has better track initiation performance com-pared with the traditional random forest method.

关 键 词:目标跟踪 航迹起始 随机森林 泛化熵 

分 类 号:V443[航空宇航科学与技术—飞行器设计] TN253[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象