检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于海燕[1] 郑神州[2] YU Hai-yan;ZHENG Shen-zhou(College of Mathematics Science,Inner Mongolia Minzu University,Tongliao 028043,China;School of Mathematics and Statistics,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]内蒙古民族大学数学科学学院,内蒙古通辽028043 [2]北京交通大学数学与统计学院,北京100044
出 处:《大学物理》2024年第1期1-4,共4页College Physics
摘 要:以波函数的规范化模平方积分作为概率密度函数,我们给出了在L 2意义下的位移函数与速度函数的方差乘积有正下界的海森伯不等式;并用傅里叶变换的微分性质、Plancherel等式以及Cauchy-Schwarz不等式作了证明.另外,Hardy不确定性原理表明可积函数和它的傅里叶变换不能同时迅速衰减,其最优的衰减方式是取高斯函数形式达到等式;基于Phragmen-Lindelof定理(无界区域上的最大模原理),给出了Hardy不确定性的复分析方法证明;最后我们给出了推广的Morgan不等式和Beurling不确定性.Taking the square of normalized modulus for the wave function of quantum mechanics as the density function of probability,the Heisenberg inequality with positive lower bound for a product of the variance of displacement function and velocity function is described.It is proved by the derivative property of Fourier transform,Plancherel lemma and Cauchy-Schwarz inequality.Hardy uncertainty principle shows that an integrable function and its Fourier transform can not rapid attenuation at the same time.The Gauss function with a negative power is to achieve the best way for the Hardy uncertainty.We apply the Phragmen-Lindelof theorem(unbounded region on the maximum modulus principle)and the argument of complex analysis to prove the Hardy uncertainty principle.In addition,we also provide some generalizations of Hardy inequality,such as the Morgan inequality and the Beurling uncertainty principle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.188.218