基于学生-问题关联的异构图知识追踪模型  被引量:2

Student-Problem Association Based Heterogeneous Graph Knowledge Tracing Model

在线阅读下载全文

作  者:闫秋艳[1] 司雨晴 袁冠[1] 王志晓[1] YAN Qiu-yan;SI Yu-qing;YUAN Guan;WANG Zhi-xiao(School of Computer Science&Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116

出  处:《电子学报》2023年第12期3549-3556,共8页Acta Electronica Sinica

基  金:国家自然科学基金(No.62277046,No.61977061)。

摘  要:知识追踪旨在评估学习者的学习状态,并根据先前的答题情况预测他们未来的答题表现.然而现有的知识追踪模型大多仅关注问题或技能间的关联,忽略了学生与问题间的结构关系.为此我们提出了基于学生问题关联的异构图知识追踪模型(StudentProblem association based heterogeneous graph Knowledge Tracing model,SPKT).该模型在知识追踪中融合了学生的学习能力和问题的重要性,并使用图注意力网络学习学生问题间的关联,获得学生、问题的嵌入表示并进行知识状态的预测.通过在真实公开数据集上的性能对比和模型消融实验,并可视化SPKT模型的知识追踪效果,证明了SPKT在预测性能上优于现有的知识追踪模型.Knowledge tracing aims to assess learners'learning status and predict their future performance based on previous answers.However,most of the existing knowledge tracing models only focus on the relationship between problems or skills,and ignore the structural relationship between students and problems.Therefore,we propose a studentproblem association based heterogeneous graph knowledge tracing model(SPKT).The model integrates the learning ability of students and the importance of problems in knowledge tracing,and uses graph attention network to learn the interaction between students'problems,so as to obtain the embedded representation of students and problems,meanwhile predicting the learners'status.It is proved that SPKT is superior to the existing knowledge tracking model in terms of prediction performance through a large number of experiments and data visualization.

关 键 词:知识追踪 异构图网络 注意力机制 学习能力 问题重要性 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象