检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张芙蓉 周惠蒙 张博 宋伟旭 王涛[1,2] ZHANG Fu-rong;ZHOU Hui-meng;ZHANG Bo;SONG Wei-xu;WANG Tao(Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration,Harbin,Heilongjiang 150080,China;Key Laboratory of Earthquake Disaster Mitigation,Ministry of Emergency Management,Harbin,Heilongjiang 150080,China;Engineering Seismic Research Center,Guangzhou University,Guangzhou,Guangdong 510006,China;BBK Test Systems Co.Ltd,Beijing 101102,China)
机构地区:[1]中国地震局工程力学研究所地震工程与工程振动重点实验室,黑龙江哈尔滨150080 [2]地震灾害防治应急管理部重点实验室,黑龙江哈尔滨150080 [3]广州大学工程抗震研究中心,广东广州510006 [4]北京博科测试系统股份有限公司,北京101102
出 处:《工程力学》2024年第3期187-198,240,共13页Engineering Mechanics
基 金:国家重点研发项目(2022YFC3801201);国家自然科学基金项目(51878630,51408565,51378478,52378142);国家杰出青年基金项目(52125806);黑龙江省优秀青年基金项目(YQ2020E004);黑龙江省头雁行动计划项目(3016);广东省自然科学基金项目(2022A1515010500);广州市校联合基金项目(2023A03J0086)。
摘 要:地震模拟振动台试验多采用离线迭代控制(ICS)实现波形的高精度复现,然而,多次迭代将对易损试验体造成累积损伤,同时,非线性试验体连续变化的动力特性将导致离线迭代控制出现精度下降的问题。针对上述问题,提出了一种基于系统矩阵修正的高精度在线迭代控制方法(HRICS)。该方法利用地震动加载过程中的实测数据在线识别系统矩阵,进而选择修正策略,并采用矩阵精度评价指标评估系统矩阵识别精度,若满足精度要求,则采用基于帧或者频率点的修正策略更新系统矩阵,最终使响应信号能够高精度地复现目标波形。通过振动台模型试验验证HRICS方法的有效性,并通过数值模拟研究HRICS方法的在非线性试验体下的控制性能。试验结果表明:HRICS采用频率点修正策略能获得最佳的控制效果;HRICS方法对目标信号的再现精度明显高于ICS方法第一次迭代后的结果。Offline iterative control(ICS)is often used in shaking table test to accurately reproduce earthquake waveform.However,multiple iterations will cause cumulative damages to vulnerable test specimens,and the continuously changing dynamic characteristics of the nonlinear test specimen will also lead to decrease of control accuracy of the ICS.To solve the problems,a high-accuracy real-time iterative control method(HRICS)based on system matrix correction is proposed.This method identifies the system matrix online upon the real-time data measured during the loading process,then selects the correction strategy accordingly,and finally evaluates the identification accuracy of system matrix by matrix accuracy evaluation indices.If the system matrix accuracy meets the requirement,the system matrix is updated upon frames or frequency points correction strategy,so that the response signal can reproduce the target waveform with high accuracy.The HRICS method is attested by shaking table test,and the control performance under nonlinear test body is studied by numerical simulation.The results indicate that the HRICS method using the frequency point correction strategy shows the best control effect.The reproduction accuracy of the HRICS method is significantly better than that of the ICS method after its first iteration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91