检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王义娜 刘赛男 王硕玉[2] 杨俊友[1] WANG Yi-na;LIU Sai-nan;WANG Shuo-yu;YANG Jun-you(School of Electrical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China;School of Systems Engineering,Kochi University of Technology,Kochi 7828502,Japan)
机构地区:[1]沈阳工业大学电气工程学院,辽宁沈阳110870 [2]高知工科大学智能机械系,日本高知7828502
出 处:《控制理论与应用》2024年第1期145-154,共10页Control Theory & Applications
基 金:国家自然科学基金项目(52175105)资助.
摘 要:针对全方向移动机器人存在非线性动态强耦合、实时重心偏移及难以实现高精度跟踪控制的问题,本文提出一种基于长短期记忆(LSTM)神经网络的重心位置在线预测的轨迹跟踪控制法.首先,建立考虑重心偏移的动力学模型并基于LSTM神经网络训练构建其对比模型;其次,基于模型对比法实时估计重心偏移参数,再基于张神经网络(ZNN)对估计的重心偏移参数进行预测以减小估计过程引起的滞后;最后,基于非线性动态反馈解耦法设计数值加速度控制算法,且基于离散系统极点配置法分析了系统的稳定性.仿真结果验证了所提方法相对于数值加速度控制器与自适应控制器因能在线预测重心偏移参数完成高精度动态解耦实现控制精度的提高.实际实验中,所提控制算法相比数值加速度控制及模型预测控制,其跟踪精度明显提高,这表明所提控制算法可显著减小重心偏移对跟踪控制精度的影响.A tracking control method based on the long short-term memory(LSTM)neural network for on-line prediction of the position of the center of gravity of an omnidirectional mobile robot is presented to solve the problems of nonlinear dynamic strong coupling,real-time center of gravity offset and difficulty in achieving high-precision tracking control.Firstly,a dynamic model considering gravity center deviation is established and its contrast model is built based on the LSTM neural network training.Secondly,the center of gravity offset parameters are estimated in real time based on the model comparison method,and then the center of gravity offset parameters are predicted based on the Zhang neural network(ZNN)to reduce the lag caused by parameter estimation.Finally,a numerical acceleration control algorithm is designed based on the dynamic feedback decoupling method,and the stability of the system is analyzed based on the pole assignment method of discrete system.The simulation results verify that the proposed method can improve the control accuracy by high-precision dynamic decoupling compared with the numerical acceleration controller and the adaptive controller because of the ability to predict the center of gravity offset parameters online.In actual experiments,the tracking accuracy of the proposed control algorithm is significantly higher than that of numerical acceleration control and model predictive control,which indicates that the proposed control algorithm can significantly reduce the impact of center of gravity offset on tracking control accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49