基于图神经网络的人工自然语言语义挖掘仿真  被引量:1

Artificial Natural Language Semantic Mining Simulation Based on Graph Neural Network

在线阅读下载全文

作  者:周显春[1,2] 喻佳[3] ZHOU Xian-chun;YU Jia(School of Information and Intelligence Engineering,Sanya University,Sanya Hainan 572022,China;Rong Chunming Academician Workstation,University of Sanya,Sanya Hainan 572022,China;School of Information Engineering,East China Jiaotong University,Nanchang Jiangxi 330013,China)

机构地区:[1]三亚学院信息与智能工程学院,海南三亚572022 [2]三亚学院容淳铭院士工作站,海南三亚572022 [3]华东交通大学信息工程学院,江西南昌330013

出  处:《计算机仿真》2024年第1期344-348,共5页Computer Simulation

基  金:海南省自然科学基金资助(620MS064);三亚市院地科技合作项目资助(2019YD26)。

摘  要:语义挖掘工具可从批量非结构化人工自然语言文本数据中准确提取有用信息,但是由于网络环境文本具备半结构化、多尺度、海量、复杂关联等属性,导致文本数据通常维度较高,且仅有小部分节点存在明确标签,因此语义挖掘难度较大。提出基于图神经网络的人工自然语言语义挖掘方法。结合多头注意力机制和半监督图卷积神经网络对人工自然语言文本降维处理。联合改进的模糊C均值聚类算法和免疫单亲遗传算法,构建人工自然语言语义挖掘算法。实验结果表明,研究方法的聚类纯度、准确率和召回率均高于95%,说明上述方法的应用性能较优。Semantic mining tools can accurately extract useful information from bulk data of unstructured artificial natural language text.However,due to the semi-structured,multi-scale,massive,and complex association attributes of network environment texts,text data usually has high dimensions and only a small number of nodes have clear labels,making semantic mining difficult.In this article,a method of mining artificial natural language semantics based on graph neural network was proposed.Firstly,multi-head attention was combined with semi-supervised graph convolution neural network to reduce the dimension of artificial natural language text.Then,the improved fuzzy c-means clustering algorithm was combined with a partheno-genetic algorithm based on immune mechanism to construct an artificial natural language semantic mining algorithm.Experimental results show that the clustering purity,accuracy and recall rate of the proposed method are higher than 95%,proving its application performance.

关 键 词:图神经网络 人工自然语言 语义挖掘 多头注意力机制 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象