基于阈值的图像分割算法研究综述:原理、分类及典型算法  被引量:6

A review of threshold-based image segmentation algorithms:Principles,classification and typical algorithms

在线阅读下载全文

作  者:杨林蛟 YANG Linjiao(College of Chemistry and Chemical Engineering,Shenyang Normal University,Shenyang 110034,China)

机构地区:[1]沈阳师范大学化学化工学院,沈阳110034

出  处:《沈阳师范大学学报(自然科学版)》2023年第6期526-529,共4页Journal of Shenyang Normal University:Natural Science Edition

基  金:辽宁省教育厅科学研究经费项目(LJC202004,LJC202005)。

摘  要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测、医学图像处理、军事目标的定位与跟踪等。作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用。其中,基于阈值的图像分割算法因具有简单有效、计算量小、性能稳定等优点而受到了人们的普遍青睐。首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理、分类及最典型的Otsu算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望。研究工作可为图像处理技术的进一步发展提供理论借鉴。With the rapid development of computer technology,image processing technology has been widely used in various fields,such as product quality detection,medical image processing,military target positioning and tracking.As the basis of image processing technology and computer vision technology,a large number of different types of algorithms has emerged,and these algorithms play an important role in various fields of application.Among them,threshold based image segmentation algorithm has been welcomed because of its advantages of simple,effective,little computation and stable performance.Firstly,the image segmentation technology is simply classified according to the different partitioning ways.Secondly,the basic principle,classification,and the basic idea of the most typical Otsu algorithm of threshold segmentation algorithm are introduced in detail.At last,the existing problems of threshold segmentation algorithm are described,and the future development trend of this algorithm are forecasted.This work can provide theoretical reference for the further development of image processing technology.

关 键 词:图像处理 阈值分割 阈值选取 算法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象