检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学
出 处:《河南农业》2024年第2期18-20,共3页
摘 要:在农业生产中,害虫防治是一项既基础又重要的环节。防治害虫的关键是对害虫种类的识别和定位。因此,我们采用两种目标检测模型结合的深度学习方法,对害虫图像样本进行识别、分类和定位。通过对现有目标检测模型的了解,选择YOLO v5和SSD两种模型,并且以YOLO v5模型为主、SSD模型为辅,建立相关算法和模型。研究流程主要分为数据分析、数据格式处理、数据划分、数据增强、模型训练5个部分。由于各类害虫数量相对较少且数据分布不均衡,肉眼很难识别,我们在所选择的模型中均采取了相应的数据增强的方式。
关 键 词:数据划分 数据分布 检测模型 深度学习 数据分析 模型训练 数据格式 数据增强
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.210.36