检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭志浩 Guo Zhihao(Gansu Railway Comprehensive Engineering Survey Institute Co.,Ltd.,Lanzhou 730015,China)
机构地区:[1]甘肃铁道综合工程勘察院有限公司,兰州730015
出 处:《工程勘察》2024年第3期61-67,共7页Geotechnical Investigation & Surveying
摘 要:无人机能够在城市规划、侦察、监视等场景下,通过目标检测技术提供准确的目标位置和类别信息,为后台处理提供详细的信息,但现有方法在无人机影像检测时存在场景泛化能力不足、小目标漏检率高等问题。鉴于此,提出一种基于回归的检测方法,在骨干网络中使用位置注意力机制为正负样本特征赋权,提高模型对正样本的学习能力;构建四个输出尺度的特征图融合金字塔,并采用改进的非极大值抑制算法精准筛选最终的输出检测框。为降低正负样本不均衡带来的影像,一方面采用交叉熵损失函数,另一方面对训练数据集进行样本增强处理。实验结果表明,所提出模型在测试数据集上的检测精度明显优于对比模型,并且在不同场景下表现出良好的泛化能力,其测试速度可达到实时检测的水平。UAV can provide accurate target location and category information through target detection technology in urban planning,reconnaissance,surveillance and other scenes,and provide detailed information for background processing.However,the existing methods have the problems of insufficient scene generalization ability and high miss rate of small targets in detecting UAV images.To solve these problems,a detection method based on regression is proposed.In the backbone network,the location attention mechanism is used to weight the positive and negative sample features to improve the learning ability of the model to the positive samples;A feature map fusion pyramid with four output scales is constructed,and an improved non maximum suppression algorithm is used to precisely screen the final output detection box.In order to reduce the image caused by the imbalance of positive and negative samples,on the one hand,the cross entropy loss function is used,and on the other hand,the training data set is enhanced.The experimental results show that the proposed model has significantly better detection accuracy than the comparison model on the test data set,and has good generalization ability in different scenarios,and its test speed has reached the level of real-time detection.
关 键 词:无人机影像 多目标检测 位置注意力 非极大值抑制 数据增强
分 类 号:P231[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.230.10