检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任慧东 鞠薇 程志友 张梦思 REN Huidong;JU Wei;CHENG Zhiyou;ZHANG Mengsil(School of Electronic and Information Engineering,Anhui University,Hefei 230601,China;School of Internet,Anhui University,Hefei 230601,China)
机构地区:[1]安徽大学电子信息工程学院,安徽合肥230601 [2]安徽大学互联网学院,安徽合肥230601
出 处:《安徽大学学报(自然科学版)》2024年第1期65-71,共7页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61672032);安徽省教育厅自然科学基金资助项目(KJ2021A0026)。
摘 要:土壤肥力是衡量土壤质量的重要指标.为了评估土壤质量和提高作物产量,迫切需要找到快速预测土壤成分的途径.首先提出Inception层短时傅里叶变换卷积神经网络(inception short-time Fourier transform convolutional neural network,简称I-STFT-CNN)单一光谱模型,然后提出2个融合光谱模型II-STFT-CNN(indirect inception short-time Fourier transform convolutional neural network)和CI-STFT-CNN(cascade inception short-time Fourier transform convolutional neural network),最后对这些光谱模型的性能参数进行对比.研究结果表明:相对于SVR(support vector regression),PLSR(partial least squares regression)和STFT-CNN(short-time Fourier transform convolutional neural network)模型,该文提出的单一光谱I-STFT-CNN模型具有更高的预测精度;融合光谱模型的预测精度优于单一光谱模型;两个融合模型中,级联融合CI-STFT-CNN模型的性能优于通道融合II-STFT-CNN模型.因此,3种模型中,CI-STFT-CNN模型的预测精度最高.Soil fertility serves as a crucial indicator of soil quality.To enhance crop yield and evaluate soil quality,it is imperative to rapidly forecast soil makeup by discovering new approaches.Firstly,a single spectral model of inception layer short-time Fourier transform convolutional neural network(I-STFT-CNN)was proposed.Then,two fusion spectral models II-STFT-CNN(indirect inception short-time Fourier transform convolutional neural network)and CI-STFT-CNN(cascade inception short-time Fourier transform convolutional neural network)were proposed.Finally,the performance parameters of these spectral models were compared.The results showed that compared with SVR(support vector regression),PLSR(partial least squares regression)and STFT-CNN(short-time Fourier transform convolutional neural network)model,the single spectral I-STFT-CNN model proposed in this paper had higher prediction accuracy.The prediction accurary of fusion spectral model was better than that of single spectral model.Among the two fusion models,cascade fusion CI-STFT-CNN model had better performance than channel fusion II-STFT-CNN model.Therefore,among the three models,the CI-STFT-CNN model had the highest prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.137.245