检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李征 LI Zheng(Lanling County Integrated Media Center,Linyi 276000,China)
出 处:《电声技术》2023年第11期38-40,共3页Audio Engineering
摘 要:文章深入探讨了智能语音新闻在语音识别、语义理解以及语音合成方面面临的挑战,并提出切实可行的解决路径。对于语音识别准确率不一致的问题,建议引入预训练语言模型来提升整体性能。针对语义理解能力有限的问题,强调发展多模态理解技术,综合不同感官输入提供更丰富的上下文信息。针对语音合成质量问题,提出训练个性化语音和应用生成对抗网络的策略。通过这些创新性的方法,智能语音新闻应用有望实现更高水平的语音交互和信息传递。This paper deeply discusses the challenges faced by intelligent voice news in speech recognition, semantic understanding and speech synthesis, and puts forward practical solutions. For the problem of inconsistent accuracy of speech recognition, it is suggested to introduce a pre-training language model to improve the overall performance. Aiming at the problem of limited semantic understanding ability, the development of multimodal understanding technology is emphasized, and different sensory inputs are integrated to provide richer contextual information. Aiming at the problem of speech synthesis quality, this paper puts forward the strategy of training personalized speech and applying generation to counter the network. Through these innovative methods, intelligent voice news applications are expected to achieve a higher level of voice interaction and information transmission.
分 类 号:TN948.13[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249