检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭妮娅[1] Peng Niya(Institute for Educational Finance,National Institute of Education Sciences,Beijing 100088,China)
机构地区:[1]中国教育科学研究院教育财政研究所,北京100088
出 处:《统计与决策》2024年第4期12-16,共5页Statistics & Decision
基 金:北京市教育科学“十四五”规划重点课题(AGAA22054)。
摘 要:基尼系数是测度贫富差距的重要指标,但是洛伦兹曲线的构造使得基尼系数存在结构性局限,即代表着不同的贫富差距情况的两条洛伦兹曲线可能对应着同一个基尼系数,仅凭基尼系数无法反映贫富差距的结构特征。文章提出将洛伦兹曲线上切线斜率为1的点叫做平均增长点,每条洛伦兹曲线有且仅有一个平均增长点,洛伦兹曲线切线斜率具有单调性,可以通过引入平均增长点,与基尼系数共同测度贫富差距,突破单纯依靠基尼系数测度贫富差距的结构性局限。The Gini coefficient is an important indicator to measure the gap between the rich and the poor,but the construction of the Lorenz curve makes the Gini coefficient have structural limitations,that is,two Lorenz curves representing different gaps between the rich and the poor may correspond to the same Gini coefficient.The Gini coefficient alone cannot reflect the structural characteristics of the gap between the rich and the poor.The raised viewpoint is as follows:The point on the Lorenz curve with a tangent slope of 1 is called the average growth point.Each Lorenz curve has only one average growth point.The tangent slope of the Lorenz curve is monotonic.By introducing the average growth point,the gap between the rich and the poor can be measured jointly with the Gini coefficient to break through the structural limitations of solely relying on the Gini coefficient to measure the gap between the rich and the poor.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28