肺神经内分泌肿瘤病理诊断和分子病理进展  被引量:1

Advances of pathological diagnosis and molecular pathology of lung neuroendocrine neoplasms

在线阅读下载全文

作  者:吴江华 朱艳丽 王海月[1] 刘艳辉 林冬梅[1] Wu Jianghua;Zhu Yanli;Wang Haiyue;Liu Yanhui;Lin Dongmei(Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education),Department of Pathology,Peking University Cancer Hospital and Institute,Beijing 100142,China;Department of Pathology,Guangdong Provincial People′s Hospital,Guangdong Academy of Medical Sciences,Guangzhou 510080,China)

机构地区:[1]北京大学肿瘤医院暨北京市肿瘤防治研究所病理科恶性肿瘤发病机制及转化研究教育部重点实验室,北京100142 [2]南方医科大学附属广东省人民医院(广东省医学科学院)病理科,广州510080

出  处:《中华病理学杂志》2024年第2期109-115,共7页Chinese Journal of Pathology

基  金:国家自然科学基金(82003155,81871860)。

摘  要:2021版WHO肺肿瘤分类中肺神经内分泌肿瘤的病理分型和诊断标准较之前无显著变化。但近年来的分子病理研究表明,肺小细胞癌和大细胞神经内分泌癌均是具有神经内分泌特征的高度异质性肿瘤,可以通过基因组或转录组的关键特征进行分子分型,对肿瘤亚型诊断以及指导患者治疗有重要参考价值。此外,“肺神经内分泌瘤G3”和“组织学转化”等新兴概念如何从病理角度进行解读以及INSM1和POU2F3等新型神经内分泌标志物应用等也需要了解和认知。本文结合2021版WHO分类和新近相关分子病理进展,对肺神经内分泌肿瘤诊断变化和分子分型进行评述。The pathological classification and diagnostic criteria for lung neuroendocrine neoplasms(NENs)in the 2021 World Health Organization(WHO)lung tumor classification are similar to the prior classifications.However,the advances on the molecular studies of lung NENs have shown that both small cell lung carcinoma and large cell neuroendocrine carcinoma are highly heterogeneous tumors with neuroendocrine characteristics and can be subclassified based on the features of genomics or transcriptomics,which are valuable in the diagnosis of lung NENs subtypes and patient treatment.In addition,it is necessary to interpret emerging concepts such as"lung neuroendocrine tumor G3"and"histological transformation"from pathological perspectives,as well as to know the novel neuroendocrine biomarkers such as INSM1 and POU2F3.This article summarized the diagnostic changes and the advances of molecular pathology of lung NENs based on the latest WHO classification and molecular research.

关 键 词:肺肿瘤 神经内分泌瘤  神经内分泌 分子诊断技术 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象