检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张西硕 柳林 王海龙[1,2] 苏贵斌 刘静[4] ZHANG Xishuo;LIU Lin;WANG Hailong;SU Guibin;LIU Jing(School of Computer Science and Technology,Inner Mongolia Normal University,Hohhot 010022,China;Computer Science Joint Innovation Laboratory,Inner Mongolia Normal University,Hohhot 010022,China;Academic Affairs Office,Inner Mongolia Normal University,Hohhot 010022,China;Library,Inner Mongolia University,Hohhot 010021,China)
机构地区:[1]内蒙古师范大学计算机科学技术学院,呼和浩特010022 [2]内蒙古师范大学计算机科学联合创新实验室,呼和浩特010022 [3]内蒙古师范大学教务处,呼和浩特010022 [4]内蒙古大学图书馆,呼和浩特010021
出 处:《计算机科学与探索》2024年第3期574-596,共23页Journal of Frontiers of Computer Science and Technology
基 金:国家重点研发计划(2020YFC1523305);内蒙古自治区自然科学基金(2023LHMS06006);内蒙古师范大学基本科研业务费专项资金(2022JBYJ032);无穷维哈密顿系统及其算法应用教育部重点实验室开放课题(2023KFZD03)。
摘 要:实体关系抽取作为知识图谱构建的基础得到了越来越多研究人员的关注。实体关系抽取能够自动、准确地从大量数据中获取知识,并以结构化形式表示和存储。因此,实体关系抽取的正确性直接影响到知识图谱构建的准确性和后续知识图谱应用效果。然而,针对复杂结构、开放领域、多语言、多模态、小样本数据和实体关系联合抽取等不同研究热点,现存的实体关系抽取方法仍存在一些局限性。基于当前实体关系抽取研究热点领域将实体关系抽取分为复杂结构研究领域、开放领域、多语言研究领域、多模态研究领域、小样本数据研究领域和实体关系联合抽取六个方面,将每个方面按照具体问题进行分类并列举出一些解决方法。不仅系统梳理了每一个类别当前存在的问题和解决方法,还归纳了每个类别的研究成果,并从定量分析和定性分析两个维度,详细地分析了每个方法的优点和缺点。最后,总结了当前热点领域中待解决的问题,同时展望了知识图谱中实体关系抽取方法未来的发展趋势。Entity-relationship extraction has gained more and more attention from researchers as a basis for knowl-edge graph construction.Entity-relationship extraction can automatically and accurately obtain knowledge from a large amount of data,and represent and store it in a structured form.Therefore,the correctness of entity-relationship extraction directly affects the accuracy of knowledge graph construction and the effect of subsequent knowledge graph application.However,for different research hotspots such as complex structure,open domain,multi-language,multi-modal,small sample data,and joint extraction of entity-relationships,the existing entity-relationship extrac-tion methods still have some limitations.Based on the current research hotspots of entity-relationship extraction,this paper tries to categorize entity-relationship extraction into six aspects:complex structure,open domain,multilin-gual,multimodal,small-sample data,and joint entity-relationship extraction,and categorizes each aspect according to the specific problems and lists out some solutions.Not only the current problems and solutions of each category are systematically sorted out,but the research results of each category are summarized,and the advantages and dis-advantages of each method are analyzed in detail from the dimensions of quantitative analysis and qualitative analy-sis.Finally,the problems to be solved in the current hot areas are summarized,and the future development trend of entity-relationship extraction methods in the knowledge graph is also prospected.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229