基于灰狼算法和极限学习机的风速多步预测  被引量:3

Multistep Prediction of Wind Speed Based on Grey Wolf Algorithm and Extreme Learning Machine

在线阅读下载全文

作  者:张文煜 马可可[2] 郭振海[3] 赵晶 邱文智 ZHANG Wenyu;MA Keke;GUO Zhenhai;ZHAO Jing;QIU Wenzhi(School of Earth Sciences and Technology,Zhengzhou University,Zhengzhou 450001,China;School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou 450001,China;State Key Laboratory of Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China)

机构地区:[1]郑州大学地球科学与技术学院,河南郑州450001 [2]郑州大学计算机与人工智能学院,河南郑州450001 [3]中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京100029

出  处:《郑州大学学报(工学版)》2024年第2期89-96,共8页Journal of Zhengzhou University(Engineering Science)

基  金:国家自然科学基金资助项目(41875085)。

摘  要:为了提高风速的多步预测水平,提出了一种基于数据信号分解和灰狼算法优化极限学习机的混合预测模型。首先,使用具有自适应噪声的完全集成经验模态分解算法将原始风速时间序列分解为若干本征模态函数和一个残差序列,并使用偏自相关函数法对模型输入进行特征选择;其次,在分解子序列上分别建立模型并进行预测,构造多输入多输出策略的极限学习机神经网络,使用灰狼优化算法求解其中的最优化隐含层权值和偏置;最后,对子序列进行重构并得到最终的预测结果。使用时间分辨率为15 min的多组实测资料开展模拟实验,所提模型在3个风电场的均方根误差分别为0.859、0.925、0.927 m/s,均低于其他对比模型,验证了该模型在未来4 h风速预测即16步预测中的有效性。In order to improve the multi-step prediction of wind speed,a hybrid prediction model based on data signal decomposition and grey wolf optimization algorithm was proposed to optimize extreme learning machine.Firstly,the original wind speed time series was decomposed into several intrinsic mode functions and a residual sequence using the complete ensemble empirical mode decomposition with adaptive noise,and the partial autocorrelation function model input.Then,the model was built and the prediction was made on the decomposition subsequence.An extreme learning machine neural network with multi-input-multi-output strategy was constructed,and grey wolf algorithm was used to solve the weight and bias of the optimal hidden layer.Finally,the subsequence was reconstructed and the final prediction result was obtained.Simulation experiments were conducted using multiple sets of measured data with a time resolution of 15 minutes.The root mean square errors of the proposed model in the three wind farms were 0.859,0.925,and 0.927,respectively,which were lower than other comparative models,verifying the effectiveness of the model in predicting wind speed in the next four hours,i.e.16 steps prediction.

关 键 词:风速预测 多步预测 信号分解 特征选择 灰狼优化算法 极限学习机 

分 类 号:TM614[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象