检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许顺凯 朱吉然 唐海国 邓威 黄肇[2] 邹长春 XU Shunkai;ZHU Jiran;TANG Haiguo;DENG Wei;HUANG Zhao;ZOU Changchun(State Grid Human Electric Power Company Limited Research Institute,Changsha 410208,China;School of Electrical Engineering,Shaoyang University,Shaoyang 422000,China)
机构地区:[1]国网湖南省电力有限公司电力科学研究院,湖南长沙410208 [2]邵阳学院电气工程学院,湖南邵阳422000
出 处:《湖南电力》2024年第1期38-44,共7页Hunan Electric Power
基 金:国网湖南省电力有限公司科技项目(B716A5230004)。
摘 要:为了降低负荷数据的复杂度、提高预测精度,提出一种短期尖峰负荷多信息融合的神经网络模型。选取皮尔逊相关系数分析假日、温度、湿度等信息之间的密切程度,将关键气象信息融合进模型中,优化负荷的输入参数,重构神经网络模型的新数据集,并防止神经网络的过拟合,提高短期尖峰负荷预测精度。算例仿真分析表明,所提方法与未考虑多信息融合的单一增强型决策树模型和神经网络模型相比,更能有效地提高短期尖峰负荷预测准确率。In order to reduce the complexity of load data and improve prediction accuracy,an neural network model based on multi information fusion for short-term peak load is proposed on this article.The Pearson correlation coefficient is selected to analyze the closeness between weather information such as holidays,temperature,and humidity.In proposed model considering the key weather information fusion,the input load parameters is optimized,a new dataset of the neural network model is reconstructed,and overfitting of the neural networkis avoided,and the accuracy of short-term peak load prediction is improved.A simulation example of peak load forecasting proves that the proposed method is more effective in improving the accuracy of short-term peak load forecasting compared to the single enhanced decision tree model and neural network model that do not consider multiple information fusion.
关 键 词:尖峰负荷 多信息融合 神经网络模型 皮尔逊相关系数
分 类 号:TM715.1[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49