检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐保祥[1] 任韩 TANG Baoxiang;REN Han(School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,Gansu Province,China;School of Mathematics Sciences,East China Normal University,Shanghai 200062,China)
机构地区:[1]天水师范学院数学与统计学院,甘肃天水741001 [2]华东师范大学数学科学学院,上海200062
出 处:《浙江大学学报(理学版)》2024年第2期178-185,共8页Journal of Zhejiang University(Science Edition)
基 金:国家自然科学基金资助项目(11171114)。
摘 要:在长度为n(n≥2为正整数)的直尺上最少刻多少个刻度就能度量1到n的所有长度,这便是至今未解决的最省刻度尺问题。阐明了最省刻度尺与极小优美图之间的关系,给出了计算最省刻度尺的所有最省刻度值的组合差集递推算法,得到长度为3~40的最省刻度尺的所有最省刻度值,同时,结合图论模型,给出了长度为41~82的最省刻度尺的最省刻度值。For a positive integer n≥2,what is the minimum number of ticks to be engraved on an unscaled ruler of length n to measure all lengths from 1 to n.This is an unsolved problem of ruler with least number of scales.This paper clarifies the relationship between ruler with the least number of scales and the minimal graceful graph,and a combined difference recursive algorithm for calculating all the least scale values of ruler with the least number of scales is given.This algorithm calculates that the length is 3 to all the minimum scale values of the most scale-saving ruler of 40,and combined with the graph theory model,the minimum scale values of ruler with least number of scales with lengths from 41 to 82 are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49