检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡元海 宋甫元 黎凯 陈彦宇 付章杰[1,2] CAI Yuanhai;SONG Fuyuan;LI Kai;CHEN Yanyu;FU Zhangjie(Engineering Research Center of Digital Forensics Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China;The State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an 710071,China)
机构地区:[1]南京信息工程大学数字取证教育部工程研究中心,南京210044 [2]西安电子科技大学综合业务网理论及关键技术国家重点实验室,西安710071
出 处:《计算机工程与应用》2024年第5期271-280,共10页Computer Engineering and Applications
基 金:国家重点研发计划(2021YFB2700900)。
摘 要:区块链上的交易合法性检测对于加密数字货币的监管具有重大意义。针对现有交易合法性检测方法存在的检测精度低下、判别过程中难以有效兼顾交易本身信息与前后拓扑信息的问题,提出融合可信深度森林的多角度高精度合法性检测方法。设计基于可信生成特征的可信深度森林TForest,以特征重排序的方式赋予子样本足够的区分度,结合可变滑动窗口以均衡无混淆的方式提取可信子样本,在大幅度降低生成特征维度的基础上,提高了深度森林的判别精度。提出一种集成策略,基于不同基模型对于正负样本识别能力的差异性,采用双阶段逐层优化的方式有效融合可信深度森林与Transformer图网络及残差网络三类基判别器,兼顾两方面信息,构成高精度的多角度分析模型T2Rnet。在Elliptic数据集上的实验结果显示,该模型的F1-score达到83.11%,相比基准图卷积方法提升31.6%,具备可靠的交易合法性检测性能。Legitimacy discrimination of transactions on the blockchain is of great importance for the regulation of crypto-currencies.In order to effectively take into account the information of the transaction itself and the topological informa-tion in the discriminative process,and to improve the discrimination accuracy,this paper proposes a multi-perspective legitimacy detection method that incorporates the trustworthy deep forest.Firstly,a trustworthy deep forest(TForest)based on generating trustworthy features is designed.It gives sufficient discrimination to subsamples by feature reordering and combines variable sliding windows to extract differentiable subsamples in a balanced and confusion-free manner.The discrimination accuracy of the deep forest is improved on the basis of significantly reducing the dimensionality of generated features.Then,an ensemble strategy is designed.It uses a two-stage layer-by-layer optimization approach to effectively fuse three types of base discriminators,namely trustworthy deep forest,Transformer graph network and ResNet.The strategy is based on the difference of base models for positive and negative samples recognition ability,and utilizes two kinds of information,finally,a high-accuracy multi-perspective analysis model T2Rnet is constituted.The experimental results on the Elliptic dataset show that the F1-score of the model achieves 83.11%,which is 31.6%higher than the baseline graph convolution method.The model has reliable transaction legitimacy discrimination performance.
关 键 词:区块链 合法性检测 可信深度森林 神经网络 双阶段集成
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249