基于神经网络预测模型的再入落点覆盖区快速计算方法  被引量:1

Rapid generation of re-entry landing footprint based on neural network predictive model

在线阅读下载全文

作  者:邢坤鹏 丁学良 戴瀚苏 李超勇 XING Kunpeng;DING Xueliang;DAI Hansu;LI Chaoyong(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;AVIC Chengdu Aircraft Design and Research Institute,Chengdu 610091,China)

机构地区:[1]浙江大学电气工程学院,浙江杭州310027 [2]航空工业成都飞机设计研究所,四川成都610091

出  处:《飞行力学》2024年第1期16-23,38,共9页Flight Dynamics

基  金:国家自然科学基金资助(62088101);浙江省自然科学基金资助(LR20F030003)。

摘  要:针对高超声速飞行器的再入落点覆盖区计算问题,提出了一种基于神经网络预测模型的快速计算方法。首先,在虚拟目标点法框架的基础上构建训练了快速预测覆盖区边界的神经网络模型,通过逼近给定再入条件下覆盖区边界横、纵程间存在的非线性关系实现对覆盖区边界的快速预测。然后,由快速预测得到的覆盖区边界对虚拟目标点法寻优参数的初值进行优化,使其分布在最优解附近以缩短对最优解的搜索时间。最后,进行了仿真验证。仿真结果表明,所提方法在保证最优性的前提下大幅提升了计算效率,具备良好的可行性与高效性。To address the issue of the computation of re-entry landing footprint for hypersonic vehicles,this paper proposed a rapid computation method based on a neural network prediction model.Firstly,on the basis of virtual target method,a neural network model was constructed and trained to predict the landing footprint quickly.This model approximated the nonlinear relationship between the down-range and cross-range of the footprint boundary under given re-entry conditions,thereby realizing fast prediction of the landing footprint.Subsequently,the predicted footprint boundary obtained from the fast prediction neural network model was used to optimize the initial values of the virtual target method’s search parameters,enabling them to be distributed near the optimal solution and thereby shortening the search time for the optimal solution.Finally,the proposed method was validated through simulations.The simulation results show that the method significantly improves computational efficiency while maintaining optimality,indicating its feasibility and efficiency.

关 键 词:高超声速飞行器 再入落点覆盖区 神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] V448.235[自动化与计算机技术—控制科学与工程] V525[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象