检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆伟健 屠佳佳 王俊茹[1] 韩思捷 史伟民[1] LU Weijian;TU Jiajia;WANG Junru;HAN Sijie;SHI Weimin(Faculty of Mechanical Engineering and Automation,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China;College of Automation,Zhejiang Institute of Mechanical and Electrical Engineering,Hangzhou,Zhejiang 310053,China)
机构地区:[1]浙江理工大学机械工程学院,浙江杭州310018 [2]浙江机电职业技术学院自动化学院,浙江杭州310053
出 处:《纺织学报》2024年第1期194-202,共9页Journal of Textile Research
基 金:国家重点研发计划资助项目(2017YFB1304000)。
摘 要:针对纺织车间背景复杂、纱筒种类多导致利用传统机器视觉识别空纱筒准确率低、模型参数量大的问题,设计了一种基于改进残差网络的空纱筒识别模型。该模型借鉴ResNet系列的模型结构,进行卷积核轻量化,改进经典的残差模块并加入SENet注意力机制,以达到提高检测空纱筒的准确率,减少模型参数的目的。最后通过数据增强,创建了适合工厂实际生产的纱筒数据集。实验结果表明:在消融实验中,应用SENet注意力机制可以提高3.86%的准确率,利用优化残差模块不仅减少了650%的模型参数还提高了1.22%的准确率。在原数据集的验证集上,改进模型的准确率为99.6%比ResNet-18模型高4.46%,与VGG-16和AlexNet相比提高了7.05%~9.41%。在增强的数据集上,识别模型的准确率都有了较大的提升,但改进模型的准确率变化不大,说明该模型的鲁棒性较好,不易受到样本不足的影响。改进模型的参数数量缩小到原模型参数数量的1/10左右,为嵌入式设备部署空纱筒识别模型提供了思路。Objective In the automatic production line of circular weft knitting robot,the use of conventional machine vision to identify empty yarn cylinders has low accuracy and a large number of model parameters in the process of automatic empty cylinder changing of the bobbin changing robot,due to the complex background of the textile workshop and the many types of yarn cylinders.In order to ensure the accurate identification of empty bobbin by bobbin changing robots,it is necessary to design an empty bobbin identification model with high accuracy and light weight.Method Based on the ResNet-18 model,the convolution kernel was light weighted,the classical residual module was improved,the SENet attention mechanism was increased,and the detection accuracy of empty bobbin was improved.By simulating various interference factors at the production site,the training samples were increased,aiming to improve the robustness of the model and to make it more suitable for the actual production environment.The model before and after improvement was compared with other detection models.Results The original dataset was adopted to study the influence of convolutional kernel lightweight design,attention mechanism and improved residual module on the model.Ablation experimentsshowed that the application of small convolution helped reduce the model parameters to a certain extent,the addition of attention mechanism improved the recognition accuracy by 3.86%,and the addition of the optimized residual structure not only improved the recognition accuracy by 1.22%,but also reduced the amount of model parameters by 650%.Under the same experimental conditions,the detection resultswere compared among the improved model,ResNe-18,VGG-16,and AlexNet network model.The accuracy of the improved model in the verification set is 99.6%,which is 4.46%higher than that of the ResNet-18 model,and 7.05%-9.41%higher than that of VGG-16 and AlexNet.Under the experimental conditions of the same training parameters and network structure,the training on the data-enhanc
关 键 词:纺织车间 空纱筒识别 残差网络 模型轻量化 深度学习
分 类 号:TS106[轻工技术与工程—纺织工程] TP391.4[轻工技术与工程—纺织科学与工程] TP183[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49